ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Design and Analysis of 64-Bit Approximate
Multiplier for Accurate and High-Level Processing

Pradeep Baghel!, Ms. Farha Khan?

PG Scholar, 2Assistant Professor

1.2 Department of ECE, Mittal Institute of Technology, Bhopal, INDIA

Abstract—This dissertation proposed a design of 64-bit
approximate multiplier algorithm based on compressors and
dadda multipliers for high accuracy & speed. Approximate
multiplier are one of the fastest multiplier for the Al based
FPGA-VLSI applications. The proposed research is presents the
64 X 64 bit approximate multiplier. The virtex 7 family FPGA
IC is used to simulate the results. The proposed approximate
multiplier designed for the 64 X 64 bit multiplication while
previous it is designed for the 16 X 16 bit multiplication. The
total number of component or utilized area is 10.66 mm2 while
previously it is 18.37 mm2. The total delay value is 0.344 ns
(16X16) and 1.376 ns (64X64) for proposed work while 0.624 ns
are for previous work. The throughput achieved by this
research is 46.51 Gbps while 25.64 Gbps for previous
simulation results.

I. INTRODUCTION

Different computer arithmetic systems can be utilized to
execute an advanced multiplier. Out of these most
procedures include computing a lot of halfway products,
and afterward adding the incomplete products together.
Until the 1970s, most minicomputers didn't have increase
guidance be that as it may, Centralized server PCs had
duplicate guidelines, yet they did the a few sorts of
movements and includes as an ‘increase schedule’. Early
chip additionally had no duplicate guidance. At that point
the Motorola 6809, presented in 1978, was probably the
most punctual microchip with devoted equipment increase
guidance. It did likewise sorts of movements and includes
as a ‘duplicate daily practice’, yet the thing that matters is
that execution was done in the microcode of the MUL
guidance. As more transistors per chip got accessible
because of bigger scale coordination, it got conceivable to
put satisfactory adders on a single chip to total all the
fractional products without a moment's delay, as opposed
to reuse a single adder to deal with every halfway product
each in turn. Presently, on the grounds that some normal
advanced sign preparing algorithms invest the vast
majority of their energy duplicating, computerized signal
processor fashioners penance a great deal of chip area so as
to make the increase as quick as would be prudent; a single
cycle duplicate gather unit often spent the majority of the
chip area of early DSPs. The development of most
computerized frameworks is a huge assignment. Restrained
creators in any field will subdivide the first undertaking

into sensible subunits building squares and will utilize the
standard subunits at every possible opportunity. In
computerized equipment, the structure squares have such
names as adders, registers, and multiplexers.

Different arithmetic activities, for example, duplication
expansion, subtraction are significant bit of advanced
circuit to accelerate the calculation speed of processor.
Anyway the speed of processor enormously relies upon
multiplier unit of the processor. This thusly expands the
interest Of rapid multiplier design in ALU and in different
advanced sign processors. A few new multiplier
engineering has been presented in the course of recent
decades. Booth's multiplier [7] and modified booth's [12]
multiplier are well known in current VLSI structure
however they have their own arrangement of detriments. In
this multiplier before showing up the last answer a few
middle of the road steps are required that eases back the
speed of processor. This middle of the road steps
incorporates a few moving tasks,
subtraction which decrease the speed of processor
exponentially as the quantity of bits present in multiplier
and multiplicand increments. Since Speed is significant
Worry in creating processors NOw days, SO new engineering
must be presented which are quicker than previously
mentioned multiplier. To address the previously mentioned
hindrance of traditional multiplier booth's multiplier and
modified booth's multiplier another engineering dependent

examination and

on approximate multiplier is investigated.
1.2 Approximate Multiplier

Approximate computing is a calculation procedure which
restores a potentially wrong outcome as opposed t0 an
ensured precise outcome, and can be utilized for
applications where an approximate outcome is adequate for
its purpose.[1][2] One case of such circumstance is for a
web crawler where no careful answer may exist for a
specific inquiry question and subsequently, numerous
answers might be satisfactory. Also, infrequent dropping of
certain edges in a video application can go undetected
because of perceptual confinements of people.
Approximate computing depends on the perception that in
numerous Situations, despite the fact that performing
precise calculation requires huge measure of assets,

36

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

permitting limited estimate can give lopsided gains in
execution and vitality, while as yet accomplishing adequate
outcome accuracy. For instance, in kmeans bunching
algorithm, permitting just 5% misfortune in arrangement
exactness can give multiple times vitality sparing
contrasted with the completely precise classification [1].

1.3 Need of Approximate Multiplier

In two plans of approximate 4-2 blowers are displayed and
utilized in halfway product decrease tree of four variations
of 8 x 8 Dadda multiplier. The significant downside of the
proposed blowers is that they give nonzero yield for zero
esteemed data sources, which to a great extent influences
the mean relative error (MRE) as examined later. The
approximate plan proposed in these brief defeats the
current disadvantage. This prompts better exactness. In
static section multiplier (SSM) proposed, m-bit fragments
are determined from-bit operands dependent on driving 1
bit of the operands. At that point, mx m augmentation is
performed rather than n x n duplication, where m<n.
Halfway product puncturing (PPP) multiplier excludes k
progressive fractional products beginning from jth
position, where j € [0,n-1] and k € [1, min(n-j, n-1)] of a n-
bit multiplier. In 2 x 2 approximate multiplier dependent
on altering a passage in the Karnaugh map is proposed and
utilized as a structure square to build 4 x 4 and8 x 8
multipliers.

Duplication of paired numbers can be disintegrated into increments. Consider the increase
of two 8-bit numbers An and B to create the 16 bit item P.

A7 A6 A5 A4 A3 A2 Al AD
X B7 B6 B B4 B3 B2 Bl BO

Partial
Products to
be added

ATB0OAG6B0ASBO A4 B0 A3 B0 A2B0O ALBOAOBO L
+ ATBl A6B1ASBl A4Bl A3B1 A2B1A1B1 A0B1
+ ATB2A6B2 A5B2 A4B2 A3B2 A2 B2 A1 B2 A0B2
+ ATBIA6B3IASBIA4BIAIBIAIB3I AIB3I AOB3 g
+ ATB4A6B4ASBAA4B4 A3 B4 AIB4 A1 B4 AOB4
+ ATBIA6BIASBS A4B5A3IBSA2BS A1BS AOBS
+ ATB6 AGBG6 ASB6 A4B6 A3 B6 A2 B6 A1 B6 A0BE
+ATBT A6BTASBT A4B7A3BTA2BTALBT AOB7

P15 P14 P13 P12 P11 P10 P9 PR P7 P6 P5 P4 P3 P2 Pl PO

el el
P(m+n) = A(m)B(n) =33 ab 2%
The equation for the addition is: 10 f=b .

1.4 DSP Architecture

The structure of approximate multiplier is actualized into a
custom DSP. The engineering displayed in figure 1.1, it is
a specially crafted DSP structure with least control
rationale and center significance is given to arithmetic unit
planned with an accumulator, barrel shifter, approximate
multiplier and an area effective convey select adder.

] 16-bit Registers

— K= (RO
port

Control Unit

Program

Data Memory
Memory

Output
———~ Port

Arithmetic
Unit

Figure 1.1: DSP Architecture

Il. LITERATURE SURVEY

Digital multiplier play vital role in advance processing S0
there are lot of multiplier are continue enhancing and
developing. This chapter include summary of various
research

work based on multiplier around the world. Some of the
multiplier research is following discussed.

P. J. Edavoor et al.,[1] High speed multimedia applications
have paved way for a whole new area in high speed error-
tolerant circuits with approximate computing. These
applications deliver high performance at the cost of
reduction in accuracy. Furthermore, such implementations
reduce the complexity of the system architecture, delay and
power consumption. This work explores and proposes the
design and analysis of two approximate compressors with
reduced area, delay and power with comparable accuracy
when compared with the existing architectures. The
proposed designs are implemented using 45 nm CMOS
technology and efficiency of the proposed designs have
been extensively verified and projected on scales of area,
delay, power, Power Delay Product (PDP), Error Rate
(ER), Error Distance (ED), and Accurate Output Count
(AOC). The proposed approximate 4:2 compressor Shows
56.80% reduction in area, 57.20% reduction in power, and
73.30% reduction in delay compared to an accurate 4:2
compressor. The proposed compressors are utilized to
implement 8 x 8 and 16 x 16 Dadda multipliers. These
multipliers have comparable accuracy when compared with
state-of-the-art approximate multipliers. The analysis is
further extended to project the application of the proposed
design in error resilient applications like image smoothing
and multiplication.

V. A et al,[2] Approximate Arithmetic has a great
potential to design digital systems that consume less power
and area without compromising delay. This technique is
mainly utilized to design systems used in error tolerant
Digital Signal Processing (DSP) applications as it
simplifies the conventional circuit using certain
approximation design strategy sacrificing the accuracy of
the output. In this work, a power and area efficient
multipliers are proposed using approximate half adders,

37

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

full adders and OR gates for partial product accumulation.
OR gates are used in the Lower Significant Bit positions
(LSB) and the approximate adders are used in Most
Significant Bit (MSB) positions. This reduces the carry
propagation for LSB bit positions. Initially, approximate
half and full adders are proposed and using that an
approximate unsigned and signed 4x4 multipliers design is
shown. Accurate Wallace Tree multipliers (WTM) are also
designed in order to determine the performance of the
proposed approximate multipliers.

R. Bhattacharjya et al.,[3] This work aims to present a
reconfigurable rounding based multiplier with different
accuracy levels. It is based on a divide and conquer
approach for applications in image processing. Our
proposed approach divides the multiplicand and multiplier
into two halves. Each half is multiplied with the other and
our architecture is made accuracy-configurable. Further,
due to rounding based approach, our
multiplication technique generates results faster. Based on
our experiments, We observe that our proposed multiplier
is 26.3% more accurate On an average compared to other
state-of-the-art 8-bit
operations.

approximate

approximate multipliers for

H. Waris et al.,[4] Radix-4 Booth encoding provides ease
in the generation of partial products, thus is widely used to
achieve power-efficient and low-area signed multipliers.
Conversely, the radix-8 Booth encoding exhibits low-
performance as it requires generation of odd multiples of
the multiplicand. In this brief, this issue is addressed by
approximating the odd multiples of radix-8 to their nearest
power of two such that the errors complement each other.
In the pursuit of an accuracy-energy trade-off, hybrid low
radix (HLR) based two approximate Booth multipliers
(HLR-BM1 and HLR-BM2) are designed. HLR-BM2,
compared to the previous best error-optimized design
(ABM1), achieved a reduced energy of 22% with a
comparable MRED.

S. Venkatachalam et al.,[5] Approximate computing is an
emerging technique in which power-efficient circuits are
designed with reduced complexity in exchange for some
loss

in accuracy. Such circuits are suitable for applications in
which high accuracy is not a strict requirement. Radix-4
modified Booth encoding is a popular multiplication
algorithm which reduces the size of the partial product
array by half. In this work, three Approximate Booth
Multiplier Models (ABM-M1, ABM-M2, and ABM-M3)
are proposed in which approximate computing is applied to
the radix-4 modified Booth algorithm. Each of the three
designs features a unique approximation technique that
involves both reducing the logic complexity of the Booth

partial product generator and modifying the method of
partial product accumulation.

S. T. Bala et al.,[6] Over the years, the complexity of VVLSI
design circuits has increased dramatically. With this
improvement, there comes the need for low area and low
power VLSI circuits. The common known fact is that
multiplier circuit plays an important role in the digital
processor design. Nowadays, low power and low area
multiplier designs are in high demand. Compared to other
multipliers, Wallace tree multipliers are considered to be
fast rather than other multipliers.

V. V. Kavipranesh et al.,[7] Approximate results are
required in many embedded data processors as they reduce
time delay and power. As error tolerance adder (ETA) has
decreased power drastically trading with accuracy. This
work focuses on reducing delay on existing adders when
replaced with a fast adder. When compared to the past
works on ETA, the proposed work has high power
utilization and more accuracy of speed. The proposed
design is compared and synthesized for the power and
delay. When observed the existing ETA designs, the
proposed work achieves significant improvement in power
dissipation about 17.13%, 4.6%, 15.4%, 5.35% decrement
for 4, 8, 16, 32 bits respectively, and significant
improvement in delay about 28.90%, 23.59%, 20.08%,
24.44% decrement for 4, 8, 16, 32 bits respectively.

P. Huang et al.,[8] As one of the most promising energy-
efficient emerging paradigms for designing digital systems,
approximate computing has attracted a significant attention
in recent years. Applications utilizing approximate
computing can tolerate some loss of quality in the
computed results for attaining high performance.
Approximate arithmetic

circuits have been extensively studied; however, their
application at system level has not been extensively

pursued. Furthermore, when approximate arithmetic
circuits are applied
at system level, error-accumulation effects and a

convergence problem may occur in computation. Semi-
supervised learning can improve accuracy and performance
by using unlabeled examples.

I1l. PROBLEM FORMULATION

Digital signal processing (DSP) is the use of digital
processing, such as by computers or more specialized
digital signal processors, to perform a wide variety of
signal processing operations. The digital signals processed
in this manner are a sequence of numbers that represent
samples of a continuous variable in a domain such as time,
space, or frequency. In digital electronics, a digital signal is
represented as a pulse train,[1][2] which is typically
generated by the switching of a transistor.[3]

38

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Digital signal processing and analog signal processing are
subfields of signal processing. DSP applications include
audio and speech processing, sonar, radar and other sensor
array processing, spectral density estimation, statistical
signal processing, digital image processing, data
compression, video coding, audio coding, image
compression, signal processing for telecommunications,
control systems, biomedical engineering, and seismology,
among others.

DSP can involve linear or nonlinear operations. Nonlinear
signal processing is closely related to nonlinear system
identification [4] and can be implemented in the time,
frequency, and spatio-temporal domains.

For advance digital processing, need high speed multiplier.
Therefore need of high speed and more accurate multiplier.

IV. PROPOSED METHODOLOGY

Proposed 64-bit approximate multiplier is design according
to following flow chart. The details of the entire block are
discussed also in this chapter.

4.1 PROPOSED WORK
» To implement 64 X 64 bit approximate multiplier.

» To use verilog coding on Xilinx platform for
implementation.

» To calculate various parameters values like area,
power, delay and power delay product (PDP).

» To compare proposed implementation form
existing approximate multiplier.

S R

| Input data bits |

!

Partial Product

Stage 1o 6

- 7

| Update Sum and Carry |

Area Product or Multiplier
Output (128 bit)

Latency u

Throughput
‘—L Performance Analysis

Power

.—| Dadda Multiplier

Figure 4.1: Flow Chart

Figure 4.1 is showing proposed flow chart. According to
this working flow it can be clear Bthat proposed
approximate multiplier is design and implemented
according to following

sub modules-

e Carry Save Adder
e Dadda Multiplier
e Compressor

e Full Adder

e Half Adder

4.1.1 Carry Save Addition

A Carry-Save Adder is only a lot of one-bit full adders,
with no carry-tying. Along these lines, a n-bit CSA gets
three n-bit operands, to be specific A (n-1).A (0), B (n-1).B
(0), and CIN (n-1).CIN (0), and produces two n-bit result
esteems, Total (n-1). Entirety (0) and COUT (n-1).COUT
(0). The most significant utilization of a carry-save adder is
to compute the fractional products in number
augmentation. This takes into account designs, where a tree
of carry-save adders (a purported Wallace tree) is utilized
to ascertain the fractional products extremely quick. One
'typical' adder is then used to include the last arrangement
of carry bits to the last halfway products to give the last
duplication result. Normally, an exceptionally quick carry-
look forward or carry-select adder is utilized for this last
stage, SO as to acquire the ideal execution.

4.1.2 Dadda Multiplier

In a famous multiplication conspire the cluster, the
summation continues in a more standard, yet more slow
way, to getting the summation of the fractional items
.Utilizing this plan just one column of bits in the lattice is
disposed of at each phase of the summation. In a parallel
multiplier the halfway items are created by utilizing exhibit
of AND entryways. The fundamental issue is the
summation of the fractional items, and it is the time taken
to perform this summation which decides the greatest
speed at which a multiplier may work. The Dadda plot
basically limits the quantity of adder stages required to
perform the summation of halfway items.

4.1.3 Compressor

It can see a full adder as a 3:2 lossy compressor: it
aggregates three one-bit sources of info and returns the
outcome as a single useless number; that is, it maps 8
information esteems to 4 yield esteems. In this way, for
instance, a twofold contribution of 101 outcomes in a yield
of 1 + 0 + 1 = 10 (decimal number 2). The carry-out speaks
to bit one of the outcomes, while the total speaks to bit
zero. In like manner, a half adder can be utilized as a 2:2
lossy compressor packing four potential contributions to
three potential yields.

4.1.4 Full Adder

A full adder includes twofold numbers and records for
values conveyed in just as out. A one-bit full adder
includes three one-bit numbers, often composed as A, B,
and Cin ; An and B are the operands, and Cin is a bit

39

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

conveyed in from the past less-noteworthy stage. The full
adder is typically a segment in a course of adders, which
include 8, 16, 32, and so on bit double numbers. The
circuit delivers a no good yield. Yield carry and total
commonly spoke to by the signs Cout and S, where total =
2 x C out + S in decimal framework. A full adder can be
executed from various perspectives, for example, with a
custom transistor-level circuit or made out of different
gates. One model execution iswithS=A @ B @ CandC
out=(A-B) +(Cin- (A & B)). In this usage, the last OR
gate before the carry-out yield might be supplanted by a
XOR gate without modifying the

subsequent rationale. Utilizing just two sorts of gates is
helpful if the circuit is being actualized utilizing
straightforward 1C chips which contain just one gate type
for each chip. A full adder can be built from two half
adders by associating An and B to the contribution of one
half adder, interfacing the whole from that to a contribution
to the subsequent adder, interfacing Ci to the next
information as well as the two carry yields. The basic way
of a full adder goes through both XOR-gates and finishes
at the sum bit s.

4.1.5 Half Adder

The half adder includes two single double digits An and B.
It has two yields, whole (S) and carry (C). The carry signal
speaks to a flood into the following digit of a multi-digit
expansion. The estimation of the total in decimal
framework is 2C + S. The most straightforward half-adder
configuration, imagined on the right, consolidates a XOR
gate for S and an AND gate for C. The Boolean rationale
for the entirety (for this situation S) will be A'B+AB' while
for carry (C) will be Abdominal muscle.

4.2 Methodology
Execution of multiplier includes three stages:

1) Increase (that is - AND) each bit of one of the
contentions, by each bit of the other, yielding N2 results.
Contingent upon position of the duplicated bits, the wires
convey various loads.

2) Decrease the quantity of incomplete items to two layers
of full and half adders.

3) Gathering the wires in two numbers, and includes them
with a customary adder.

The amassing of produce signals is done section astute. As
every component has a likelihood of 1/16 of being one,
two components being 1in similar section even abatements.
For instance, in a segment with4 produce signals,
likelihood of all numbers being 0 is (1 — pr) 4, just a single
component being one is 4pr (1 — pr) 3, the likelihood of
two components being one in the section is 6pr 2(1 — pr) 2,
three ones is4pr 3(1— pr)

and likelihood of all components being 1 is pr4, where pr is
1/16. The probability statistics for a number of generate
elements m in each column. Using OR gate in the

accumulation of column wise generate elements in the
altered partial product matrix provides exact result in most
of the cases. As can be seen, the probability of m is
prediction is very low. As the number of generate signals
increases, the error probability increases linearly.
However, the value of error also rises. To prevent this, the
maximum number of generate signals to be grouped by OR
gate is kept at 4. For a column having m generates signals,
OR gates are used.

LR A LLansAsEan

/

5. Partial Products Stage

T e T Ty

AN

> Stage]

-
LA \L .
A e e
A J
AR l
B ey P Stage 3
LI]
R
NSO drA Staged
L It } Snge
TRNLLTLCTCIININET T Stages

Figure 4.2: 64-bit dadda multiplier
V. SIMULATION AND RESULTS
5.1 Simulation Software

The implementation of the proposed 64-bit approximate
multiplier is Xilinx 14.7 version using verilog language.
Isim simulator is used for simulation and validation of
result in test bench. Behavioral modeling style used to
develop proposed algorithm. Artix Family is used to
implementation.

5.1.1 ISE Design Suite: Logic Edition

The ISE Plan Suite: Rationale Version enables you to go
from structure passage, through usage and check, to gadget
programming from inside the bound together condition of
the

40

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

ISE Venture Pilot or from the direction line. This release
incorporates selective tools and innovations to help
accomplish ideal plan results, including the accompanying:

5.1.2 ISE Design Suite: Embedded Edition

The ISE Structure Suite: Inserted Version incorporates
every one of the tools and capacities of the Rationale
Release with the additional abilities of the Installed
Advancement Pack (EDK). This pre-arranged unit is an
planning implanted

integrated software answer for

handling frameworks.

Approximate_Multiplier

input1(63:0) answer(127:0)

input2(63:0)

Approximate_Multiplier

Figure 5.1: Top level View

Figure 5.1 is showing the top view of the proposed code,
which includes the 64 bits input 1 and input 2and 128 bit
output.

full adder:1

genarate_M_bit Addedi] f

Figure 5.2: Combination of half and full adder

Half adder- The 64 bit input x and y goes to the half adder
and generate sum (s) and carry (c). Full adder- The 64 bit
input x and y goes to the full adder and carry (c) from the
half adder. All the sums are added and generate final
product.

Figure 5.3: Completer register transfer level technology
view

Figure 5.3 is showing technological register transfer level
view. There are 6 stages of operation S0 many numbers of
wires, full adder and other component are using.

Figure 5.5: Values of input ‘b’

Figure 5.5 is showing input values of ‘b’, here binary
number 1 shows the active signal and 0 shows the blank
Space means.

T T - OO = BN = M = JO T =P

Figure 5.7: Values of internal signal g2

41

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE) ISSN: 2395-2946
@ ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

ZulAPB ARt FalD) leaEa O 11010111111111000000111110000011111110000001111
e 11000000111111100

Now simulation is done using Isim simulator. Figure 5.10
is showing test bench window.

Here ‘a’ and ‘b’ is 64-bit inputs and ‘¢’ is 128-bit output.
Value of’a’and ‘b’ is mentioned above. Now the output of
‘c’ is multiply of ‘a’ and ‘b’.

Figure 5.8: Values of internal signal temp1 Output (c) =
Figure 5.8 shows internal signal values of templ, temp2, 10010100010010100001101110111010010001010001100
temp3 and temp4. 1110001111101110111010001
e 01011110000010101110100101110111100111111011100
011001101

5.1.2 Hexadecimal Number Input (64-bit)

Figure 5.9: Output values during simulation

Figure 5.9 shows complete sub-module values of given
input ‘a’ and input ‘b’.

Figure 5.12: Result validation in Test Bench-3

R

Here ‘a’ and ‘b’ is 64 bit hexadecimal inputs and ‘¢’ is 128
bit hexadecimal output. Value

of ‘a’ is aaaabbbbcccedddd and value of ‘b’ is
eeeeffffaaaabbbb. The output of ‘c’ is

dd4d2dA A4 R2

YYYYTYYYYOYY

3 [P

multiply of ‘@ and ‘b’. So wvalue of ‘¢’ is

Figure 5.10: Output values during simulation in 9f4a0feda3d720£d8d157e4b5678716f.

hexadecimal

5.1.1 Binary Number Input(64-bit)

Figure 5.13: Input ‘a’signal state

Figure 5.10: Result validation in Test Bench-1

Input (a) =

10101111110000110101010101111100001111000011110
00011111111111110

Input (b) = Figure 5.14: Input ‘b’signal state

42

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Figure 5.15: Output ‘c’ signal state

Device Utilization Summary (estimated values) [
Logic Utilization Used Available Utilization
Number of Slice LUTs 95 204000 0%
Number of fully used LUT-FF pairs 0 95 0%
Number of bonded I0Bs 192 600 2%

Figure 5.22: Device utilization summary

Figure 5.22 is showing summary of components using
duration proposed approximate multiplier implementation.
Total number of slice look up table used 95 while
availability is 204000. Look up table and flip flop pairs
used 0 while availability is 95. Bonded input output block
used 192 while availability is 600. Now total area is
calculated from this utilization summary. Therefore, 10.66
% of area used for implementation of proposed 64-bit
approximate multiplier.

Timing Details

All values displayed in nanoseconds (ns)

Timing constraint: Default path analysis

Total number of paths / destination ports: 4160 / 64
Delay: 13.745ns (Levels of Logic = 34)

Source: inputl<2> (PAD)

Destination: answer<62> (PAD)

Data Path: input1<2> to answer<62>

Table 5.1: Primitive and Black Box Usage summary

Sr No. | Block Name Quantity
1 BELS 95

2 LUT2 1

3 LUT3 31

4 LUT4 1

5 LUTS 60

6 LUTé6 2

7 I0 Buffers 192

8 IBUF 128

9 OBUF 64

Cell:in->out fanout Delay Delay

Gate Net

Logical Name (Net Name)

IBUF:I->0

LUTG6:10--0
LUT5:14->0
LUT5:14->0
LUT5:14->0
LUT3:12->0

0.001 0.698 inputl_2 IBUF (inputl_2 IBUF)

0.097 0.305 generate_N_bit_Adder[2].f'c_outl (carry<2=)

0.097 0.305 generate N_bit_Adder[4].f/c_outl (carry-
0.097 0.305 generate N_bit_Adder[6].f'c_outl (carry-
0.097 0.305 generate N_bit_Adder[8].f'c_outl (carry<8=)
0.097 0.300 generate N_bit_Adder[9].f/c_outl (carry<9>)

LUT5:14->0

LUT3:10->0
(answer_62_OBUF)

OBUF:I->0 0.000

0.097 0.515 generate N_bit_Adder[61].f/c_outl (carry<61>)

e P T

0.097 0.279 generate N_bit Adder[62].fMxor_s_xo0<0>1

answer_62_OBUF (answer<62>)

Total 11.610ns (1.376ns logie, 10.234ns route)

Table 5.2: Simulation Parameter

Sr No. Parameters Proposed Work

1 Type of Multiplier 64 X64 bit

(]

Area 10.66%

3 Delay 1.376 ns

4 Power 128 microwatt

5 PDP (Power delay product) 44.032

6 Frequency 726 MHz

7 Throughput 46.51 Gbps

Table 5.3: Comparison of Simulation Results

Sr Parameter Previous Work [1] Proposed Work

No.

1 Order of 16X 16 64X 64

multiplier

Area 18.37 mm’ 10.66 mm’

(=)

3 Delay 0.624 ns 0.344 ns (16X16)

1.376 ns (64X64)

4 Power 218.8 micro watt 128 microwatt

5 Power Delay 136.62 44,032

Product

6 Throughput 25.64 Gbps 46.51 Gbps

Therefore proposed 64-bit approximate multiplier gives
better result in term of calculated parameters. So it can be
used in high speed, low area and latency.

VI. CONCLUSION AND FUTURE WORK
6.1 Conclusion

Multiplier is an important part in arithmetic processors, the
current mobile applications and DSP applications need ICs
with high-speed operations but low power consumption.

This dissertation presents various parameters analysis like
power, area, latency, throughput, frequency and power
delay product to identify the improved architectures for
high-speed applications. It was also found that the power
consumption of multipliers and the basic building block of
more CMOS VLSI circuits depend on the switching
of the adders. Therefore 64-bit efficient
approximate multiplier is result
validation using xilinx ISE 14.7 software successfully.

activities
implemented and

43

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Approximate half-adder, fulladder, and 4-2 compressor are
proposed to enhance speed of multiplier. The proposed
multiplier plans can be utilized in applications with
negligible misfortune in yield quality while sparing huge
power and area.

Approximate multiplier are one of the fastest multiplier for
the Al based FPGA-VLSI applications. The proposed
research is presents the 64 X 64 bit approximate multiplier.
The virtex 7 family FPGA IC is used to simulate the
results. The proposed approximate multiplier id designed
for the 64 X 64 bit multiplication while previous it is
designed for the 16 X 16 bit multiplication. The total
number of component or utilized area is 10.66 mm2 while
previously it is 18.37 mm2. The total delay value is 0.344
ns (16X16) and 1.376 ns (64X64) for proposed work while
0.624 ns are for previous work. The throughput achieved
by this research is 46.51 Gbps while 25.64 Gbhps for
previous simulation results.

6.2 Future Scope

Approximate computing has been utilized in an assortment
of areas where the applications are error-tolerant, for
example, mixed media preparing, Al, signal handling,
logical computing, and so on Numerous applications for
signal handling, PC vision and Al demonstrate an innate
resistance to some computational error.

e This error flexibility can be misused to exchange off
exactness for investment funds in power utilization
and structure area. Since increase i a fundamental
arithmetic activity for these applications, in this
work we center specifically around this activity and
propose a novel approximate multiplier with a
powerful range choice plan.

e We structure the multiplier to have a fair-minded
error appropriation, which prompts lower
computational errors in genuine applications since
errors counterbalance one another, as opposed to
gather, as the multiplier is utilized over and again
for a calculation.

e Implement approximate multiplier for 128 bit and
256 bit data multiplication.

e Modification in sub module like compressor, carry
save adder etc.

e Practical implementation in any real time high speed
digital multiplier.

REFERENCES

[1]. P. J. Edavoor, S. Raveendran and A. D. Rahulkar,
‘Approximate Multiplier Design Using Novel Dual-Stage
4:2 Compressors,” in IEEE Access, vol. 8, pp. 48337-48351,
2020, doi: 10.1109/ACCESS.2020.2978773.

[2]. V. A and R. Dhavse, ‘Design of High Accuracy, Power
Efficient and Area Efficientl6x16 Approximate Multiplier,’

2020 IEEE 17th India Council International Conference
(INDICON), 2020, pp. 1-6, doi:
10.1109/INDICON49873.2020.9342223.

[3]. R. Bhattacharjya, A. Kanani and N. Goel, ‘ReARM: A
Reconfigurable Approximate Rounding-Based Multiplier for
Image Processing,” 2020 24th International Symposium on
VLS| Design and Test (VDAT), 2020, pp. 1-4, doi:
10.1109/VDAT50263.2020.9190474.

[4]. H. Waris, C. Wang and W. Liu, ‘Hybrid Low Radix
Encoding-Based Approximate Booth Multipliers,” in IEEE
Transactions on Circuits and Systems Il: Express Briefs, vol.
67, no. 12, pp. 3367-3371, Dec. 2020, doi:
10.1109/TCSI1.2020.2975094.

[5]. S. Venkatachalam, E. Adams, H. J. Lee and S. Ko, ‘Design
and Analysis of Area and Power Efficient Approximate
Booth Multipliers,” in IEEE Transactions on Computers, Vol.
68, no. 11, pp. 1697-1703, 1 Nov. 2019, doi:
10.1109/TC.2019.2926275.

[6]. S. T. Bala, D. Shangavi and P. Sangeetha, ‘Area and Power
Efficient Approximate Wallace Tree Multiplier using 4:2
Compressors,” 2018 International Conference on Intelligent
Computing and Communication for Smart World (12C2SW),
2018, pp. 287- 290, doi:
10.1109/12C2SW45816.2018.8997160.

[7]. V. V. Kavipranesh, J. Janarthanan, T. N. Amruth, T. M.
Harisuriya and E. Prabhu, Power And Delay Efficient Exact
Adder For Approximate Multiplier,” 2018 International
Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2018, pp. 1896-1899, doi:
10.1109/ICACCI.2018.8554552.

[8]. P. Huang, C. Wang, R. Ma, W. Liu and F. Lombardi, ‘A
Hardware/Software Codesign Method for Approximate
Semi-Supervised K-Means Clustering,” 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
2018, pp. 575-580, doi: 10.1109/ISVLSI.2018.00110.

[9. T. Su, C. Yu, A. Yasin and M. Ciesielski, ‘Formal
Verification of Truncated Multipliers Using Algebraic
Approach and Re-Synthesis,” 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2017, pp. 415-420,
doi: 10.1109/I1SVLSI.2017.79.

[10].A. Bonetti, A. Teman, P. Flatresse and A. Burg,
‘Multipliers-Driven Perturbation of Coefficients for Low-
Power Operation in Reconfigurable FIR Filters,” in IEEE
Transactions on Circuits and Systems |: Regular Works, vol.
64, no. 9, pp. 2388-2400, Sept. 2017, doi:
10.1109/TCS1.2017.2698138.

[11].R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha and
M. Pedram, °‘RoBA Multiplier: A Rounding-Based
Approximate Multiplier for High-Speed yet Energy-
Efficient Digital Signal Processing,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 2, pp. 393-401, Feb. 2017, doi:
10.1109/TVLSI1.2016.2587696.

[12].P. Yin, C. Wang, W. Liu and F. Lombardi, ‘Design and
Performance Evaluation of Approximate Floating-Point

44

ISSUE: 108, VOLUME 73, NUMBER 12, DECEMBER 2021

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Multipliers,” 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2016, pp. 296-301, doi:
10.1109/ISVLSI.2016.15.

[13].A. Mehta, S. Maurya, N. Sharief, B. M. Pranay, S. Jandhyala
and S. Purini, ‘Accuracyconfigurable approximate multiplier
with error detection and correction,” TENCON 2015 - 2015
IEEE Region 10 Conference, 2015, pp. 1-4, doi:
10.1109/TENCON.2015.7372902.

[14].V. Mrazek and Z. Vasicek, ‘Automatic Design of Low-
Power VLSI Circuits: Accurate and Approximate
Multipliers,” 2015 IEEE 13th International Conference on
Embedded and Ubiquitous Computing, 2015, pp. 106-113,
doi: 10.1109/EUC.2015.20.

[15].N. Maheshwari, Z. Yang, J. Han and F. Lombardi, ‘A
Design Approach for Compressor Based Approximate
Multipliers,” 2015 28th International Conference on VLSI
Design, 2015, pp. 209-214, doi: 10.1109/VLSID.2015.41.

45

