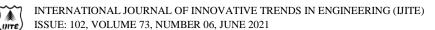
# A Review Paper on Design and Control of Fuel Cell Based Permanent Magnet Synchronous Motor Drive for Electrical Vehicle

Dilip Verma<sup>1</sup>, Vijay Anand Bharti<sup>2</sup>

<sup>1</sup>M.Tech., <sup>2</sup>Assistant Professor Department of EE, Mittal Institute of Technology Bhopal, India

Abstract—have resulted in tremendous popularity increases of these vehicles during the last two decays. The lack of insight in the finite nature and in the environmental impact of the fossil fuels, as well as the fast development of the internal combustion engine during the First World War and the low fuel prices, pushed the electric vehicles aside. Now however, when the environmental impact of the traffic caused pollution is becoming visible and the fossil fuel reserve of this planet fades rapidly, new possibilities to be developed alternative power train concept arises. This development may even be considered as necessary if the freedom of using fast and flexible personal and goods transport are not to be abandoned meanwhile the planets environment is preserved for the future generations. In this proposed work hydrogen is used as fuel and pollutants are not released into the atmosphere hence it can continuously generate electric power as long as hydrogen and oxygen are available. Also, in this work Permanent magnet synchronous motor drive is used in place of dc motor, which makes the system of compact size, more efficient, larger torque to weight ratio, high power density, high torque capability and maintenance free. Due to this permanent magnet synchronous motors are widely used in high performance applications. Simulations have been done in MATLAB/SIMULINK environment to explore the system response. The response obtained for stator current, electromagnetic torque, rotor speed of PMSM and bus voltage of the fuel cell.

Keywords— PMSM, FOC, DTC, PEMFC, HEVs, MCFC, SOFC, etc.


## I. INTRODUCTION

The emission and fuel consumption favorable operation of the Hybrid Electric Vehicles (HEVs) have resulted in tremendous popularity increase of these vehicles during the last two decays [1]. The electric vehicle is however not a new concept and the manufacturing of such vehicles started as early as before 1900. Ferdinand Porsche's first hybrid vehicle produced in 1899 was for instance propelled by four The lack of insight in the finite nature and in the environmental impact of the fossil fuels, as well as the fast development of the internal combustion engine (ICE) during the First World War and the low fuel prices, pushed the electric vehicles aside [2]. Since then, the ICE vehicles have dominated the roads and have now probably done that far longer than any of those driving them today can remember. The infrastructure, performance demands, manufacturing process and many other aspects have been influenced and formed by this dominance. Now however, when the environmental impact of the traffic caused pollution is becoming visible and the fossil fuel reserve of this planet fades rapidly, new possibilities to developed alternative power train concepts arise. This development may even be considered as necessary if the freedom of using fast and flexible personal and goods transports are not to be abandoned meanwhile the planets environment is preserved for the future Substantial amount of research generations. and development time, as well as financial means is now invested by the manufacturers and political organs in order to meet the demands from a constantly more aware public.

Even if large advance has already been made, there are still many aspects to be considered and problems to be solved regarding the HEVs before they can be fully commercialized. Two such aspects are the cost and performance of these vehicles. Because even if the environmental concern has been brought to attention, the customers must be able to afford the product and the product needs to fulfill its purpose. Another aspect is the origin of a substitution fuel and its distribution. Various research and development activities have resulted in a variety of different hybrid solutions, from the electric motor assisted bicycles to more advanced plug in hybrid cars and the fuel cell vehicles (FCV).

# 1.2 Fuel Cell based Vehicle

When there are at least two forms of energy stored on board a vehicle that can be used for propulsion and if the energy in at least one of the cases is electric, such a vehicle qualifies to be called a HEV. Since this is the case for the FCV, where the propulsion energy can be taken from the hydrogen supplied to the fuel cell or from the electric energy stored in the battery, these vehicles can be regarded as HEVs.



The drive line of the HEV is usually one of three basic types. One type is the series drive line imposing that only one energy form is used to power the propulsion. The other two types are the parallel and complex drive line solutions [2]. The parallel drive line impose that two energy forms can be used at the same time and the complex driveline impose that both the series and parallel drivelines are implemented and that a choice is made which solution to use in a certain situation. All these drive line solutions have their pros and cons when compared to one another. However, since the energy used to power the propulsion motor of the FCV is electric, the series drive line solution is only one studied in the following work.

Since the FCV is propelled by electric energy, this types of vehicle posses the same potential of emission favorable transportation as the battery sourced electric vehicle (EV). The fuel cell however, gives the benefit of extended travelled distance for the same or even smaller battery size. This reduction in battery dependence is desirable since the battery, at present, can be regarded as the Achilles heel in all hybrids [3] due to e.g. low life time and high cost. The fuel cell technology however introduces other challenging aspects. One issue is the absence of fuel distribution infrastructure, making it hard to commercialize the fuel cell vehicle. To deal with this problem there are several demonstration projects of hydrogen highways around the world and ongoing research on storage possibilities. In a sense this issue is partially addressed in this thesis, where the fuel consumption and storage capacity is investigated.

Naturally it has to be kept in mind that for this emission favorable concept to become reality, the hydrogen needs to be produced and distributed in equally emission favorable way. In the ideal case also the manufacturing process, service and the recycling process all need to be emission favorable. Even if these issues are of great importance and strongly related to the environmental benefits of the FCV and other types HEVs, they are not considered in this text and left for other inspired investigators and future studies.

## 1.3 Fuel Cell

A fuel cell converts chemical energy to electrical energy with the help of an electrochemical reaction. Out of the many clean source of energy, fuel cell is considered as one of the most efficient and reliable as it don't consists any moving parts and have water and heat as the only byproducts. A fuel cell can be classified according to the type of electrolyte used. Out of different types of fuel cell, proton exchange membrane fuel cell (PEMFC) is widely used because of its low operating temperature, low noise, high efficiency and low pollution. In present day 1 kW to 2 MW power ranges of fuel cell are used in various applications. A fuel cell is defined as an electrical cell, which unlike other storage devices can be continuously fed with a fuel in order that the electrical power can be maintained. The fuel cells convert hydrogen or hydrogencontaining fuels, directly into electrical energy, heat, and water through the electrochemical reaction of hydrogen and oxygen.

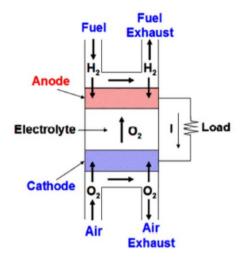



Figure 1.1: Basic configuration of Fuel Cell with operation

#### **II. LITERATURE REVIEW**

# 2.1 Introduction

A fuel cell is an electrochemical device that produces electric power in the form of direct current by converting chemical energy present in the fuel (hydrogen). William Grove of United Kingdom and Friedrich Schoenbein of Switzerland were among the first who pioneered the work in the field of Fuel Cell in 1830s. General electrical of the united states was the first to develop the Proton exchange membrane fuel cell(PEMFC) for the use of National Aeronautics and Space Administration (NASA) in 1960s for their first manned space vehicle Gemini. Several companies are developing PEMFC technology for space power applications. Ballard power system was one of the first power companies that pioneered in the field of fuel cells for military application. Ballard started making power system for military application that would run longer and virtually silent as compared to other sources of power. Preferably hydrogen is used as a fuel and oxygen is used as an oxidant for Fuel Cells. Although air can be used instead of oxygen but there is decrease in the Fuel Cell efficiency for this kind of arrangement [2].

The concept of microgrid system as found in several literatures is presented here. Since a large population on earth does not have access to electricity and most of this population lives in rural and remote areas, the distribution generation technology is one of the most effective ways to eradicate the power deficiency in these areas [4]. The DERs consist of a variety of generation technologies such as fuel cells, solar, micro-turbines and wind etc. and the main advantage is that there is reduction in the transmission distance and hence the cost of installation and



maintenance of transmission infrastructure is very much reduced [5]. A microgrid is a power system consisting mainly of distributed energy resources, interconnected loads and capable of operating in grid connected as well as islanded mode including critical and noncritical load selectivity [6]. As mentioned in [7] the centralized model of generation, transmission and distribution has become outdated and less efficient due to high transmission and distribution loss. The existing high voltage transmission of power is controllable and reliable but it has the problem of complexity in interconnected grid system which requires control system for reliable operation. The conventional generating power systems which comprise of large generating units are less flexible to the ever increasing load demand. Any problem in one grid can have cascading effect on other grids. This has given way to more efficient, environment friendly microgrids. The developments in the field of microgrids include increase penetration levels of distributed energy resources (DER), improved generation efficiency through use of CCHP (combined cooling heat and power.

Again as mentioned in [7], for the effective operation of microgrid the different typed of distributed energy resources that are connected with each other must be provided with various electronic interfaces. These electronic interfaces makes microgrid more flexible in case of fault as well as load variations. This increases the reliability and flexibility of the microgrid. Microgrid either operates in grid connected mode or in islanded mode. In grid connected mode voltage and frequency parameters of microgrid are controlled by main grid but controlling operation in islanded mode is quite complicated due to less storage capacity and lack of inertia because of increasing penetration of DER units. Also there is natural uncertainty in various DER technologies like wind, photovoltaic etc. [8, 9].

It was observed in [10], while operating in grid connected mode any fault arising in utility grid will result in large fault current in microgrid. This can be overcome using traditional over current relay. However the use of multiple DER inherently producing D.C electric power and then converting it into A.C electric power using semiconductor devices introduces complications in the protection scheme of microgrid as fault current in case of grid independent mode may not rise to a value to use traditional over current protection techniques. As traditional protection equipments are based on the principle of current sensing, the lower values of fault current in case of inverter interfaced distributed generation makes traditional over current protection schemes non effective.

Also it was mentioned in [11] that the presence of multiple distribution generators in case of microgrid makes power and fault current non unidirectional. The conventional protection schemes are made for unidirectional power flow. So this is a hindrance to selection of conventional protection schemes for microgrid.

# 2.2 Fuel Cell Types

There are many types of Fuel cell line PEMFC, MCFC, AFC, SOFC. But only PEMFC can be operated at normal air temperature. PEMFC is lightweight so it can be easily transported, used for distribution power generation. There are a number of fuel cells that can be chosen according to the power rating. 1kW FC has the output voltage range of about 25-50 V and 30 kW and above Fuel cells have output voltage of about 200-400V [12]. As stated in [13], a fuel cell system has five basic sub systems these include fuel processor, water management, air management, thermal management and power conditioning sub system.

## 2.3. Comparison of Different Types of Fuel Cells

As explained in [17] PAFC technology is commercially available as well as technologically more advanced in comparison with other type of fuel cells. MCFC still needs some improvement to overcome technical and economical barriers before they could be commercialized at par with other type of fuel cells. SOFC is very useful particularly in stationary fuel cell. They are very much commercialized. If economic issues are resolved then SOFC can be very successful in distributed generation applications. PEMFC have become very popular in the recent years due to technological breakthroughs in the field of cell power density as well as reduction in the cost. These are the only type of fuel cells which are being tested for the vehicular applications.

## 2.4. Fuel Cell Applications

The increasing demand for clean sources of energy due to fast depleting fossil fuels has put use of unconventional sources of energy more in demand. Among the unconventional sources of energy, Fuel Cell is becoming more popular because of virtually silent operation, environment friendly and higher efficiency [24]. Also the hydrogen is used as fuel in the fuel cells which is abundant in the earth and less prone to depletion as compared to other hydrocarbon fuels used for electricity production like diesel, coal, natural gas etc.

#### **III. PROBLEM FORMULATION**

A hybrid electric vehicle (HEV) augments an electric vehicle (EV) with a second source of power referred to as the alternative power unit (APU). Pure electric vehicles currently do not have adequate range when powered by batteries alone, and since recharging requires several hours, the vehicles are viewed as impractical for driving extended distances. If air conditioning or heating is used, the vehicle's range is further reduced. Accordingly, the hybrid concept, where the alternative power unit is used as

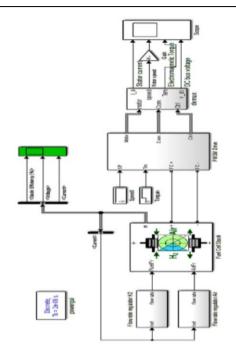


a second source of energy, is gaining acceptance and is overcoming some of the problems of pure electric vehicles.

## IV. PROPOSED METHODOLOGY

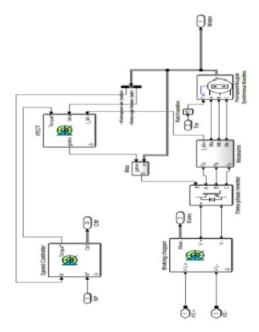
In recent years, many countries across the world have been exploring and developing green vehicles since the petrol crisis and environmental problems throughout the world are becoming more and more severe. Consequently, electric vehicles, a vehicle of zero pollution, become a wise choice in these countries.

However, due to the cost of high-efficient batteries and the limited number of charging stations, Battery Electric Vehicles (BEVs) have not been widely applied into automotive market in many developing countries. Thus a more suitable vehicle, the Plug-in Hybrid Electric Vehicle (PHEV) is a better option in comparison with the BEV.


A PHEV is a hybrid vehicle which adopts rechargeable batteries that can be recharged by plugging it into external electrical outlets. A PHEV has an electric motor and an internal combustion engine (ICE). PHEVs are expected to consume less petroleum, lessen carbon dioxide emissions, counteract global warming, and be conducive to nations' energy independence, see [1].

The electric drive system is one of the key components of a PHEV. The electric drive system can largely affect the performance of the vehicle. For the current development of the motor, the crucial parts of the technical upgrade are to improve its reliability and life expectancy.

Due to the restrictions of space and environment, the PMSM drive system applied in PHEVs has some advantages compared to the conventional electric drive system, such as higher efficiency in steady-state and operates constantly at synchronous speed. PMSMs also have the advantages of high power density, high power factor and are easy to maintain. Therefore, PMSMs have become one of the significant development directions of electric motor in automotive applications.


## V. SIMULATION RESULTS

A prototype model of proposed system is developed in the MATALB/SIMULINK environment. Here in the proposed work fuel cell is taken as the MATLAB tool box. The whole system is simulated in the MATLAB Simpower system tool box. Figure 5.1 shows the Simulink model of proposed fuel cell based PMSM drive.



# Figure 5.1: SIMULINK model of Proposed Fuel Cell Based PMSM Drive

A closed loop control scheme is used for controlling of the Permanent magnet synchronous motor drive. The basically here use vector control strategy for controlling of the PMSM motor. Figure 5.2 shows the Simulink model of the control scheme of the PMSM.



# Figure 5.2: SIMULINK model of PMSM control Strategy

Here in the simulation two control blocks is used for controlling the PMSM drive.

First one is speed control block. This block is used for generating the torque developed by the PMSM due to load variation. Figure 6.3 shows the SIMULINK model of speed controller. This controller is based on PI regulator.



The output of the regulator is a torque set point applied to the vector controller block.

| Fuel Cell Parameter                             |                                                |
|-------------------------------------------------|------------------------------------------------|
| Voltage at 0A, and 1 A                          | 400V, 380V                                     |
| Nominal Operating Voltage                       | 400                                            |
| Nominal Operating Current                       | 258                                            |
| Number of Cell                                  | 400                                            |
| Stack Efficiency                                | 57%                                            |
| H <sub>2</sub> Composition                      | 99.95%                                         |
| O2 Composition                                  | 21%                                            |
| Fuel Cell response Time                         | 2 sec                                          |
| Peak O <sub>2</sub> Utilization                 | 80%                                            |
| Voltage Overshoot at O <sub>2</sub> utilization | 10V                                            |
| Fuel Pressure                                   | 3 bar                                          |
| Air Pressure                                    | 3 bar                                          |
| PMSM Parameter                                  |                                                |
| Motor Rating                                    | 400 V, 50Hz, 3 Phase 4 pole                    |
| Stator Phase Resistance R,                      | 0.2 Ω                                          |
| Inductance                                      | L <sub>4</sub> =8.5 mH, L <sub>4</sub> = 8.5mH |
| Flux Linkage                                    | 0.175 wB                                       |

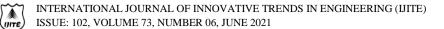
# Table 6.1: System Parameter used in Simulation

# VI. CONCLUSION & FUTURE WORK

## 6.1 Conclusion

Due to limitation of the fossil fuel the trend of automobile industries now move toward the electrical vehicle. The vehicle uses DC motor which has more restriction in the field of transportation. So now the researcher's works in the field of the implementation of the AC motor. AC motor has more advantage with respect to DC motor. The industry grows with the application of the AC motor. The main problem is the power supply. Fuel cell is a new type of power generation source which utilize a small area and mostly suitable for the electrical vehicle.

In this thesis proposed fuel cell based permanent magnet synchronous motor drive. For making the project here firstly reviewed the fuel cell technology. The concept of the fuel cell utilized in the drive is also discussed. The main aim objective of this proposed work is associated with the controlling of the drive based on PMSM. So for this the thesis also discusses the basic concept of permanent magnet synchronous drive system in brief. The control strategy is based on the field oriented control of the PMSM. Also here in this work discussed the fuel cell technology with their control strategy. The whole work is simulated in MATLAB software in SIMULINK environment to check the performance test based on the variable load torque of the system. On the basis of the simulation of the proposed work in different condition the result is found satisfactory in nature.


## 6.2 Future Work

The whole work is based on the application of fuel cell as a power source for PMSM drive system. There are some suggestions which can be used in the future for proposed work. Also some idea is here for improvement of the electrical drive application of the proposed work. The future scope of the proposed work is:

- Here in this thesis the field oriented control strategy is used for speed control of the PM Synchronous motor, in future direct torque control method is implemented for better control of the motor.
- The pulse width modulation technique here is used is SPWM. In future SVPWM technique can be used for more efficient PWM Technique.
- In future the optimization techniques like FUZZY, ACO, PSO etc is also implemented in the proposed system.
- Here in this proposed work harmonic related issues is not discussed so in future it is also useful for improving the dynamic behavior of the drive.

## REFERENCES

- [1]. Kongwanarat N. and Limmeechokchai B. "Sustainable rural electrification in Thailand:analysis of energy consumption and CO2 emissions" International Conference and Utility exhibition on Green Energy for Sustainable Development, Pattaya, Thailand, pp.1-7, 19-21 March 2014.
- [2]. Sayigh A., Crueden A.J. "PEM Fuel cells" Comprehensive energy fuel cell and hydrogen technology,vol.4, June 2012.
- [3]. Yunchang S., Zhaozheng S., Yiyun W. "Development situation and policy suggestion of Chinese renewable energy" International Conference on Materials for Renewable Energy & Envirnoment (ICMREE), Shanghai, vol.1, pp.1-4, 20- 22 May2011.
- [4]. Hartono B.S., Budiyanto Y., Setiabudy R. "Review of Microgrid technology" International Conference on Quality in Research, pp. 127-132, 25-28 June 2013.
- [5]. Alibhai Z., Gruver W.A., Kotak D.B., Sabaz D. "Distributed Coordination of Microgrids using bilateral contracts" IEEE international Conference on systems, man and cybernetics, vol.2, pp. 1990-1995, 10-13 Oct. 2004.
- [6]. Mingyan S., Ruiye L., Dianjun L.V. "Control Strategy of Voltage and Frequency for islanded Microgrid" International Power Electronics and Motion Control Conference, vol.3, pp.1074-1082, 2-5 June 2012.
- [7]. Lassater R.H., "Smart Distribution: Coupled Microgrids" Proceedings of IEEE, vol.99, no.6, pp.1074-1082, June 2011.
- [8]. Katiraei F., Iravani R., Hatziargyriou N., Dimeas A. "Microgrid Management" IEEE Power and Energy magazine, vol.6, no.3, pp.54-65, May- June 2008.



- [9]. IEEE Standard for Interconnecting Distributed Resources with Electric Power System, IEEE Std. 1547.2-2008, 15 April 2009.
- [10]. Redfern M.A., Al-Nasseri H. "Protection of Microgrids dominated by distributed generation using solid state converters" IET 9th International Conference on Development in Power System Protection, pp.670-674, 17-20 March 2008.
- [11]. Conti S. "Analysis of distribution network protection issues in presence of dispersed generation" Electric power research Journal, vol.79, issue1, pp.543-566, June 2009.
- [12]. Ke Jin, Xinbo Ruan, Mengxiong Yang, Min Xu "A Hybrid Fuel Cell Power System" IEEE Transactions on Industrial Electronics, vol.56, no.4, pp.1212- 1222, April 2009.
- [13]. Ellis M.W., Von Spakovsky M.R., Nelson D.J. "Fuel cell systems: efficient, flexible energy conversion for the 21st century" Proceedings of IEEE, vol.89, no.12, pp.1808-1818, Dec 2001.
- [14]. Du Liming, Zhang Jun, Sun Liping "A Compact Fuel Processor integrated with 75kWPEM Fuel Cells" International Conference on Electric Information and Control Engineering, pp.1906-1910, 15-17 April 2011.
- [15]. Zhao D., Blunier B., Gao F., Dou M., Miraoui A. "Control of Ultrahigh- Speed Centrifugal Compressor for the Air management of Fuel Cell System" IEEE Transactions on Industry Applications, vol.50, no.3, pp.2225-2234, May-June 2014.
- [16]. Metz T., Paust N., Muller C., Zengerle R., Koltay P. "Micro Structured Flow Field for Passive Water Management in miniaturized PEM Fuel Cells" IEEE 20th International Conference on Micro Electro Mechanical Systems, pp.863- 866, 21-25 Jan. 2007.
- [17]. Xinhong Huang, Zhihao Zhang, Jin Jiang "Fuel Cell Technology for Distributed Generation: An Overview" IEEE International Symposium on Industrial Electronics, vol.2, pp.1613-1618, 9-13 July 2006.
- [18]. Brunton J., kennedy D.M., O'Rourke F., Coyle E. "Design of a single Alkaline Fuel Cell test bed" International Conference on Environment and Electrical Engineering, pp.53-56, 16-19 May 2010.
- [19]. Lukas M.D., Lee K.Y., Ghezel- Ayagh H., "Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant" IEEE Transactions on Energy conversion, vol.14, no.4, pp.1651-1657, Dec 1999.
- [20]. Lengden M., Cunningham R., Johnstone W. "Tunable Diode Laser based
- Concentration Measurements of water vapour and methane on Solid Oxide Fuel Cell" Journal of Lightwave Technology, vol.31, no.9, pp.1354-1359, May 2006.