
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 21

A Brief Survey on Efficient Fault-Tolerance

Design for Multiplications
Kumar Avinash1, Prof. Swati Gupta2

1M.Tech Scholar, 2Research Guide

Department of Electronics and Communication Engg. Vidhyapeeth Institute of Science & Technology, Bhopal

Abstract-Now-a-days new generation embedded computers are

requested by all designing frameworks, for example,

communication, generation, nuclear power plants, flying

machine, autos, and so on. The embedded PC frameworks are

getting to be mind boggling in both their structure and

architecture. An embedded PC framework can be utilized

progressively frameworks A survey on plan dependent on error

remedy coding has been exhibited to ensure parallel filters. In

that plot, each filter is treated as a bit, and excess filters that go

about as equality check bits are acquainted with recognize and

right errors. In this short, applying coding methods to secure

parallel filters is tended to in an increasingly broad manner.

Specifically, it is demonstrated that the way that filter sources of

info and yields are not bits but rather numbers empowers a

progressively efficient insurance. This lessens the security

overhead and makes the quantity of excess filters autonomous

of the quantity of parallel filters. The present writing audit is

portrayed. At last, both the adequacy in securing against errors

and the expense are assessed for a field-programmable gate

array usage in past work.

Keywords-Fault tolerance, matrix vector multiplication, parallel

processing, soft errors.

I. INTRODUCTION

Traditionally, the problem of computational fault-tolerance

has been solved through modular redundancy. In this

technique, several identical copies of the system operate in

parallel using the same data, and their outputs are

compared with voter circuitry. If no errors have occurred,

all outputs will agree exactly. Otherwise, if an error has

occurred, the faulty module can be easily identified and the

correct output determined. Modular redundancy is a

general technique and can be applied to any computational

task. Unfortunately, it does not take advantage of the

structure of a problem and requires a large amount of

hardware overhead relative to the protection afforded.

A more efficient method of protecting computation is to

use an arithmetic code and tailor the redundancy to the

specific operation being performed. Arithmetic codes are

essentially error-correcting codes whose error detecting

and correcting properties are preserved during

computation. Arithmetic codes offer performance and

redundancy advantages similar to existing error-correcting

codes used to protect communication channels.

Unfortunately, arithmetic codes exist for only a limited

number of operations.

Fig. The Transition of Fault, Error and Failure in a

Software Cycle.

This review addresses the general problem of designing an

arithmetic code to protect a given computation. A practical

arithmetic code must satisfy three requirements:

• It must contain useful redundancy.

• It must be easily encoded and decoded.

• Its inherent redundancy must be preserved throughout

computation.

The first two requirements are shared by error-correcting

codes for protecting data transmission, while the third

requirement is unique to arithmetic codes. This host of

requirements makes designing practical arithmetic codes

an extremely difficult problem.

A. Fault Tolerance

Fault tolerance is the property that enables a system to

continue with its correct operation even in the presence of

faults (errors), and it is generally implemented by error

detection and subsequent system recovery. Fault tolerance

has been a subject of research for a long time, and

significant amount of work has been produced over the

years to provide fault tolerance, systems are usually

designed such that some redundancy is included. The

common types of redundancy used are information,

hardware, and time redundancy.

Error-detecting and error-correcting codes provide fault

tolerance while using information redundancy, i.e. the data

includes additional information (check bits) that can verify

the correctness of the data before it is used (error-

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 22

detection), or even correct erroneous data bits (error-

correction). Different error-detecting and error-correcting

codes have been proposed including parity codes, cyclic

codes, arithmetic codes etc. The major disadvantage of

error-detecting and error-correcting codes is that they are

limited to errors that occur during transfer of data (system

bus) or errors in memory.

Fault-tolerant control systems are closed-loop systems in

which a satisfactory performance can be maintained

regardless of uncertainty. The sources of uncertainty, for

instance, are the occurrence of a component malfunction

and exogenous disturbances. Fault-tolerant design

problems in dynamic processes have attracted great

attention in both theoretical research and industrial

applications. In general, there is a trade-off between the

fault-tolerance capability and the achievable performance.

Fault-tolerant control systems are complex since they are

required to operate despite the presence of uncertainty in

the systems. The main purpose is to design a closed-loop

system with fault- tolerant controller or observer that takes

the component faults into account to ensure a stable

closed-loop system with a sufficiently small degradation in

the nominal performance. Thus it is by nature a multi-

objective design exercise. The most suitable formulation is

in the form of linear matrix inequalities (LMIs).

As many control systems and engineering processes

become more and more complex, widespread and

integrated, the effects of system failures can be simply

devastating to the infrastructure of modern society for

extensive commercial, industrial and safety reasons.

Therefore, fault tolerance is necessary in many control

engineering applications such as: safety-critical systems

(nuclear reactors, aircraft, and missile guidance systems),

cost-critical systems (large space structures, space

vehicles, autonomous underwater vehicles).

The terminology used in this thesis is listed below and is

consistent with that defined by the committee.

 Fault: An unpermitted deviation of at least one

characteristic property or parameter of the system from

the acceptable, usual or standard condition.

 Failure: A permanent interruption of a system’s ability

to perform a required function under specified

operating conditions.

Note that the difference between fault and failure is that

the term fault is to represent a malfunction in the process

of system operation while failure denotes the situation that

system functions suffer a complete breakdown. For

instance, in the electronic parallel circuit design, a short

circuit is always considered as a failure while a open

circuit is considered as a fault since the damage of a open

circuit to the whole circuit depends on the location of

occurrence.

A typical fault-tolerant control system consists of three

parts: a reconfigurable controller, fault detection (FD) and

diagnosis scheme and a control law reconfiguration

mechanism. One of the key challenges, which are the main

objective of this thesis, is to design a sufficiently robust

controller which is reconfigurable. Note that the controller

design methods assume that the fault information is

provided by some FD schemes.

In particular, this thesis concentrates on the control design

for systems with faults/failures in the actuators and sensors

(components) as well as the disturbances from the external

environment. Figure 1.1 depicts the considered uncertainty

in the system. Note that we define the faults/failures by the

location of occurrence.

Figure 1.1 Uncertainty in an Open Loop System.

Failures are common in distributed runtimes that operates

on thousands of computers, especially when the

computation infrastructure is built using commodity

hardware equipments. Although this is different from the

experience we have in using high end computation clusters

with better networking equipments, and also in using

leased resources (virtual machines) from Cloud providers,

we also identify the need for producing distributed

runtimes with fault tolerance capabilities.

Therefore, applications can process input data amidst node

failures, provided that the number of replicas of data and

the replica placement can effectively handle failures.

Further, their approach of writing intermediate data

products to persistent storage simplifies the failure

handling logic.

II. SYSTEM MODEL

A. Architecture of Error Detection

The architecture shown in Figure 2.1 consists of two

processing nodes (processors), a shared memory and a

Compare & Control Unit (CCU) connected through a

shared bus. In such architecture RRC is performed as

follows. Each job is duplicated and concurrently executed

on both processing nodes. At a given time (a checkpoint

request), the execution of the job is interrupted and a

checkpoint is taken at each node. The checkpoint includes

sufficient information such that the job can be resumed

from that particular point. We consider a checkpoint to be

represented as the state (status) of a processing node. Once

the states of both nodes are obtained, each processing node

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 23

sends its state to the CCU. The CCU compares the states

from both processing nodes. If the states match, i.e. no

errors are detected; the CCU stores one of the states in

memory and signals to the processing nodes to continue

with the execution of the job. If the states do not match,

i.e. an error is detected; the CCU loads the most recently

saved state from memory and sends it to both processing

nodes forcing them to roll-back the execution of the job.

Figure 2.1: Error detection system model.

B. Fault Model and Fault Assumptions

For the fault model, we consider that soft errors (faults)

that occur in the processing nodes cause erroneous

outcome of the undergoing computation, i.e. bit-flips in the

result produced after some computation. The fault model

considers the occurrence of soft errors as an independent

event. This means that the occurrence of a soft error does

not depend on previous soft errors that have occurred.

Further, the fault model considers that the probability Pt

that no errors occur in a processing node within an interval

of length T is given. This model is not limited to the

number of faults that can occur within a time interval,

which is an assumption that has been used in other

research studies.

While soft errors can occur in any part of a computer

system, i.e. memories, communication controllers, buses,

etc , we address soft errors that occur only in the

processing nodes, and we assume that errors occurring

elsewhere in the system are handled with conventional

techniques for fault tolerance, e.g. error-correction codes

(ECC) for handling soft errors that occur in memory.

Further, we assume that each soft error provides a unique

erroneous outcome. By using this assumption, if two soft

errors occur, one in each processing node, the states of

both processing nodes will differ due to that each soft error

has caused a different erroneous outcome. Figure 2.2

shows the model of fault tolerance parallel filter.

Figure 2.2 Fault Tolerances in Parallel Filter.

III. LITERATURE SURVEY

Sr.

No.
Title Author Year Approach

1 An Efficient Fault-

Tolerance Design for

Integer Parallel Matrix–

Vector Multiplications

Z. Gao, Q. Jing, Y.

Li, P. Reviriego and

J. A. Maestro

2018 This paper proposes a fault-tolerant design for integer

parallel MVMs. The scheme combines ideas from

error correction codes with the self-checking

capability of MVM.

2 Utilizing Multi-Level Data

Fault Tolerance to

Converse Energy on

Software-Defined Storage

S. Chen et al. 2017 This study enables an energy-efficient multilevel data

fault tolerance design on a single disk group. A series

of experiments show that the proposed design could

reduce the storage system energy consumption

significantly when compared with the original

architecture.

3 Two-State Check pointing

for Energy-Efficient Fault

Tolerance in Hard Real-

Time Systems

M. Salehi, M.

Khavari Tavana, S.

Rehman, M.

Shafique, A. Ejlali

and J. Henkel

2016 This paper presents a low-overhead two-state check

pointing (TsCp) scheme for fault-tolerant hard real-

time systems. It differentiates between the fault-free

and faulty execution states and leverages two types of

checkpoint intervals for these two different states.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 24

4 Locality-Aware Parallel

Sparse Matrix-Vector and

Matrix-Transpose-Vector

Multiplication on Many-

Core Processors

M. O. Karsavuran,

K. Akbudak and C.

Aykanat

2016 In this work, we identify five quality criteria for

efficient and scalable thread-level parallelization of

SpMMTV that utilizes one-dimensional (1D) matrix

partitioning. We also propose two locality-aware 1D

partitioning methods, which achieve reusing A-matrix

non zeros and intermediate z-vector entries.

5 Fast Sparse Matrix and

Sparse Vector

Multiplication Algorithm

on the GPU

C. Yang, Y. Wang

and J. D. Owens

2015 We examine the scalability of three approaches -- no

sorting, merge sorting, and radix sorting -- in solving

this problem. For breadth-first search (BFS), we

achieve a 1.26x speedup over state-of-the-art sparse-

matrix dense-vector (SpMV) implementations.

6 Research on parallel model

for sparse matrix-vector

iterative multiplication

J. Li, Q. Wu and P.

Zou

2013 we have established three different parallel algorithm

models and analyzed the characteristic features of

their computing and communication, and through the

analysis and comparison of time-cost, we choose the

optimal model.

7 Design of Fault Tolerant

Reversible Arithmetic

Logic Unit in QCA

B. Sen, M. Dutta, D.

Banik, D. K. Singh

and B. K. Sikdar

2012 this work targets design of reversible ALU

(arithmetic logic unit) in QCA (Quantum-dot Cellular

Automata) framework. The design is based on the

reversible QCA structure (RQCA) introduced in this

paper.

Z. Gao, Q. Jing, Y. Li, P. Reviriego and J. A. Maestro [1]

Parallel matrix processing is a typical operation in many

systems, and in particular matrix-vector multiplication

(MVM) is one of the most common operations in the

modern digital signal processing and digital

communication systems. This paper proposes a fault-

tolerant design for integer parallel MVMs. The scheme

combines ideas from error correction codes with the self-

checking capability of MVM. Field-programmable gate

array evaluation shows that the proposed scheme can

significantly reduce the overheads compared to the

protection of each MVM on its own. Therefore, the

proposed technique can be used to reduce the cost of

providing fault tolerance in practical implementations.

S. Chen et al. [2] In the era of digitalization, people store

their data digitally on local or remote storage. To prevent

data loss due to disk failures, data fault tolerance

mechanisms have been widely deployed to provide

different levels of reliability. However, applying data fault

tolerance mechanisms incurs extra cost on storage space

and energy consumption. Therefore, data with different

importance should be stored on storage that provides

different levels of fault tolerance to lower the cost.

Software-defined storage (SDS) become a viable option

since it includes a centralized controller to process data

requirements. However, there is little discussion on how to

enable multilevel data fault tolerance on single SDS disk

group to satisfy different levels of fault tolerance

requirement with energy-efficient considerations. %In

addition, applying two or more data fault tolerance

mechanisms directly on the same disk group could be

problematic and not energy efficient. To address this issue,

this study enables an energy-efficient multilevel data fault

tolerance design on a single disk group. A series of

experiments show that the proposed design could reduce

the storage system energy consumption significantly when

compared with the original architecture.

M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique,

A. Ejlali and J. Henkel [3] Check pointing with rollback

recovery is a well-established technique to tolerate

transient faults. However, it incurs significant time and

energy overheads, which go wasted in fault-free execution

states and may not even be feasible in hard real-time

systems. This paper presents a low-overhead two-state

check pointing (TsCp) scheme for fault-tolerant hard real-

time systems. It differentiates between the fault-free and

faulty execution states and leverages two types of

checkpoint intervals for these two different states. The first

type is non uniform intervals that are used while no fault

has occurred. These intervals are determined based on

postponing checkpoint insertions in fault-free states, with

the aim of decreasing the number of checkpoint insertions.

The second type is uniform intervals that are used from the

time when the first fault occurs. They are determined so as

to minimize execution time for faulty states, leaving more

time available for energy management in fault-free states.

Experimental evaluation on an embedded processor

(LEON3) and an emerging nonvolatile memory

technology (ReRAM) illustrates that TsCp significantly

reduces the number of checkpoints (62% on average)

compared with previous works, while preserving fault

tolerance. This results in 14% and 13% reduced execution

time and energy consumption, respectively. Furthermore,

we combine TsCp with dynamic voltage scaling (DVS)

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 25

and achieve up to 26% (21% on average) energy saving

compared with the state-of-the-art techniques.

M. O. Karsavuran, K. Akbudak and C. Aykanat [4] Sparse

matrix-vector and matrix-transpose-vector multiplication

(SpMMTV) repeatedly performed as z←ATxand y← A z

(or y A w) for the same sparse matrix A is a kernel

operation widely used in various iterative solvers. One

important optimization for serial SpMMTV is reusing A-

matrix nonzeros, which halves the memory bandwidth

requirement. However, thread-level parallelization of

SpMMTV that reuses A-matrix nonzeros necessitates

concurrent writes to the same output-vector entries. These

concurrent writes can be handled in two ways: via atomic

updates or thread-local temporary output vectors that will

undergo a reduction operation, both of which are not

efficient or scalable on processors with many cores and

complicated cache-coherency protocols. In this work, we

identify five quality criteria for efficient and scalable

thread-level parallelization of SpMMTV that utilizes one-

dimensional (1D) matrix partitioning. We also propose two

locality-aware 1D partitioning methods, which achieve

reusing A-matrix nonzeros and intermediate z-vector

entries; exploiting locality in accessing x-, y-, and z-vector

entries; and reducing the number of concurrent writes to

the same output-vector entries. These two methods utilize

rowwise and columnwise singly bordered block-diagonal

(SB) forms of A. We evaluate the validity of our methods

on a wide range of sparse matrices. Experiments on the 60-

core cache-coherent Intel Xeon Phi processor show the

validity of the identified quality criteria and the validity of

the proposed methods in practice. The results also show

that the performance improvement from reusing A-matrix

nonzeros compensates for the overhead of concurrent

writes through the proposed SB-based methods.

C. Yang, Y. Wang and J. D. Owens [5] We implement a

promising algorithm for sparse-matrix sparse-vector

multiplication (SpMSpV) on the GPU. An efficient k-way

merge lies at the heart of finding a fast parallel SpMSpV

algorithm. We examine the scalability of three approaches

-- no sorting, merge sorting, and radix sorting -- in solving

this problem. For breadth-first search (BFS), we achieve a

1.26x speedup over state-of-the-art sparse-matrix dense-

vector (SpMV) implementations. The algorithm seems

generalize able for single-source shortest path (SSSP) and

sparse-matrix sparse-matrix multiplication, and other core

graph primitives such as maximal independent set and

bipartite matching.

J. Li, Q. Wu and P. Zou [6] The most effective algorithms

of solving large sparse linear system are Block

Wiedemann and Block Lanczos, sparse matrix-vector

multiplication iterations is the main process of these

algorithms, to achieve parallel computing of its process,

we have established three different parallel algorithm

models and analyzed the characteristic features of their

computing and communication, and through the analysis

and comparison of time-cost, we choose the optimal

model.

B. Sen, M. Dutta, D. Banik, D. K. Singh and B. K. Sikdar

[7] this work targets design of reversible ALU (arithmetic

logic unit) in QCA (Quantum-dot Cellular Automata)

framework. The design is based on the reversible QCA

structure (RQCA) introduced in this paper. A fault tolerant

architecture of reversible ALU is also synthesized. The

proposed designs are verified and evaluated over the

existing ALU designs and found to be more efficient in

terms of design complexity and quantum cost.

IV. PROBLEM IDENTIFICATION

In the previous work the efficient coding schemes for fault

- tolerant parallel filters are the filters that has been used in

the filter bank for the communication channel in the

protection status. The data’s communicated through this

channel length have been arrived from the associated

architecture In many cases, the filters perform the same

processing on different incoming signals as there is a

tendency to use multiple-input-multiple- output systems

.This parallel operation can be exploited for fault

tolerance. In fact, reliability is a major challenge for

electronic systems. In particular, soft errors are an

important issue, and many techniques have been proposed

over the years to mitigate them. Some of these techniques

modify the low-level design and implementation of the

integrated circuits to prevent soft errors from occurring.

Other techniques work at a higher abstraction level by

adding redundancy that can detect and correct errors.

V. CONCLUSION

Technology scaling has empowered us to keep pace with

the power, execution, zone and usefulness necessities of

electronic circuits. Alongside the focal points, it has

additionally given difficulties because of expanded

spillage current, unwavering quality disappointments, and

so forth. At first delicate errors were a worry just for

security basic applications. Yet, with the scaling of

innovation, delicate errors are getting to be relevant

notwithstanding for electronic gadgets in purchaser

showcase space. Because of the restrictive expense related

with the structure, producing and different pledges

required for coordinated circuits, regularly gadgets planned

with solid accentuation in one market section will discover

use in another, for example items reused crosswise over

inventory (purchaser) and car markets.

REFERENCES

[1] Z. Gao, Q. Jing, Y. Li, P. Reviriego and J. A. Maestro, "An

Efficient Fault-Tolerance Design for Integer Parallel

Matrix–Vector Multiplications," in IEEE Transactions on

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 76, VOLUME 52, NUMBER 01, APRIL 2019

 26

Very Large Scale Integration (VLSI) Systems, vol. 26, no. 1,

pp. 211-215, Jan. 2018.

[2] S. Chen et al., "Utilizing Multi-Level Data Fault Tolerance

to Converse Energy on Software-Defined Storage," 2017

IEEE International Conference on Smart Cloud

(SmartCloud), New York, NY, 2017, pp. 1-6.

[3] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A.

Ejlali and J. Henkel, "Two-State Checkpointing for Energy-

Efficient Fault Tolerance in Hard Real-Time Systems," in

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 7, pp. 2426-2437, July 2016.

[4] M. O. Karsavuran, K. Akbudak and C. Aykanat, "Locality-

Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-

Vector Multiplication on Many-Core Processors," in IEEE

Transactions on Parallel and Distributed Systems, vol. 27,

no. 6, pp. 1713-1726, 1 June 2016.

[5] C. Yang, Y. Wang and J. D. Owens, "Fast Sparse Matrix

and Sparse Vector Multiplication Algorithm on the GPU,"

2015 IEEE International Parallel and Distributed Processing

Symposium Workshop, Hyderabad, 2015, pp. 841-847.

[6] J. Li, Q. Wu and P. Zou, "Research on parallel model for

sparse matrix-vector iterative multiplication," Proceedings

of 2013 3rd International Conference on Computer Science

and Network Technology, Dalian, 2013, pp. 122-125.

[7] B. Sen, M. Dutta, D. Banik, D. K. Singh and B. K. Sikdar,

"Design of Fault Tolerant Reversible Arithmetic Logic Unit

in QCA," 2012 International Symposium on Electronic

System Design (ISED), Kolkata, 2012, pp. 241-245.

