

sgα-Closed sets in Topological Spaces

A. Devika¹, S. Sathyapriya²

¹Associate Professor, P. S. G College of Arts and Science, Coimbatore. ²M. Phil Scholar, P. S. G College of Arts and Science, Coimbatore

Abstract - In this paper, a new set called sga-closed set is introduced. Also, its properties were studied.

Keywords: sga-closed sets and sga-open sets.

I. INTRODUCTION

N. Levine [7] introduced generalized closed sets (briefly g-closed set) in 1970. N. Levine [12] introduced the concepts of semi-open sets in 1963. Bhattacharya and Lahiri [3] introduced and investigated semi-generalized closed (briefly sg- closed) sets in 1987. Arya and Nour [2] defined generalized semi-closed (briefly gs-closed) sets for obtaining some characterization of s-normal spaces in 1990. O.Njastad in 1965 defined α -open sets [12]. In this paper, a new set called semi-generalized α -closed sets (briefly sg\alpha-closed) is introduced their proper- ties were studied.

Throughout the paper X and Y denote the topological spaces (X, τ) and (Y, σ) respectively and on which no separation axioms are assumed unless otherwise explicitly stated.

II. PRELIMINARIES

A subset A of a topological space X is said to be open if $A \in \tau$ A subset A of a topological space X is said to be closed if the set X - A is open. The interior of a subset A of a topological space X is defined as the union of all open sets contained in A. It is denoted by int(A). The closure of a subset A of a topological space X is defined as the intersection of all closed sets containing A. It is denoted by cl(A).

Definitions 2.1.

1. A subset A of a space (X, τ) is said to be semi open [6] if $A \subseteq cl(int (A))$ and semi closed if int $(cl(A)) \subseteq A$.

2. A subset A of a space (X, τ) is said to be α -open [12] if $A \subseteq int (cl (int (A)))$ and α -closed if $cl (int (cl (A))) \subseteq A$.

3. A subset A of a space (X, τ) is said to be β open or semi pre- open [1] if A \subseteq cl (int (cl (A))) and β -closed or semi pre-closed if int (cl (int (A))) \subseteq A. 4. A subset A of a space (X, τ) is said to be pre-open [11] if A \subseteq int (cl (A))

and pre-closed if $cl(int(A)) \subseteq A$.

The complement of a semi-open (resp.pre-open, α -open, β -open) set is called semi-closed (resp.pre-closed, α -closed, β -closed). The intersec- tion of all semi-closed (resp.pre-closed, α -closed, β -closed) sets containing A is called the semi-closure (resp.pre-closure, α -closure, β -closure) of A and is denoted by scl(A)(resp. pcl(A), α -cl(A), β -cl(A)). The union of all semi-open (resp.pre-open, α -open, β -open) sets contained in A is called the semi-interior(resp.pre-interior, α -interior, β -interior) of A and is de- noted by sint(A)(resp. pint(A), α -int(A), β -int(A)). The family of all semi- open (resp.pre-open, α -open, β -open)sets is denoted by SO(X)(resp. P O(X), α – O(X), β – O(X)). The family of all semi-closed (resp.pre-closed, α -closed, β -closed)sets is denoted by SC I(X) (resp. P C I(X), α -C I(X), β -C I(X)). Definitions 2.2.

1. A subset A of a space (X, τ) is called generalizedclosed set [7] (briefly g-closed) if cl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ).The complement of a g-closed set is called g-open set.

2. A subset A of a space (X, τ) is called generalized semi-closed set [12] (briefly gs-closed set) if scl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ) .

3. A subset A of a space (X, τ) is called semigeneralized closed set [3] (briefly sg-closed set) if scl $(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .

4. A subset A of a space (X, τ) is called a generalized-closed set [9] (briefly α g-closed) if α (cl (A)) \subseteq U, whenever A \subseteq U and U is open in (X, τ) .

5. A subset A of a space (X, τ) is called generalized α -closed set [8] (briefly g α -closed) if α (cl (A)) \subseteq U, whenever A \subseteq U and U is α -open in (X, τ) .

6. A subset A of a space (X, τ) is called generalized pre-closed set [10] (briefly gp-closed) if pcl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ).

7. A subset A of a space (X, τ) is called generalized semi-pre closed set [4] (briefly gsp-closed) if spcl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ) .

III. sgα-CLOSED SETS IN TOPOLOGICAL SPACES

In this section the notion of a new class of sets called $sg\alpha$ closed sets in topo- logical spaces is introduced and their properties were studied.

Definition 3.1 A subset A of space (X, τ) is called sg α closed if scl (A) \subseteq

U, whenever $A \subseteq U$ and U is α -open in X.

The family of all sga-closed subsets of the space X is denoted by SGaC (X).

Definition 3.2 The intersection of all sg α -closed sets containing a set A is called sg α -closure of A and is denoted by sg α -cl(A).

A set A is sga-closed set if and only if sga Cl(A) = A.

Definition 3.3 A subset A in X is called sg α -open in X if A^{c} is sg α - closed in X.

The family of a sg α -open sets is denoted by SG α O(X).

Definition 3.4 The union of all $sg\alpha$ -open sets containing a set A is called $sg\alpha$ -interior of A and is denoted by $sg\alpha$ -Int(A).

A set A is sga-open set if and only if sga Int (A) = A.

Theorem 3.5 Every closed set is a sg α -closed set.

Proof: Let A be a closed set and U be any α -open set containing A. Since A is closed, cl(A) = A. For every subset A of X, $scl(A) \subseteq cl(A) = A \subset U$ and so we have $scl(A) \subseteq U$. Hence A is $sg\alpha$ -closed.

Remark 3.6 The converse of the above theorem need not be true as seen from the following example.

Example 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{b, c\}\}$. Then

 $A = \{a, b\}$ is sga-closed but not a closed set of (X, τ) .

Theorem 3.8 Every $g\alpha$ closed set is a sg α -closed set.

Proof: Proof follows from the definition obviously.

Remark 3.9 The converse of the above theorem need not be true as seen from the following example.

Example 3.10 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\} \{b, c\}\}$. Then $A = \{b\}$ is sga-closed but not ga closed set of (X, τ) .

Theorem 3.11 Every $sg\alpha$ closed set is a sg-closed set.

Proof: The proof follows from the definition and the fact that every semi-open set is α -open.

Remark 3.12 The converse of the above theorem need not be true as seen from the following example.

Example 3.13 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{c\}, \{a, c\}\}$. Then $A = \{a\}$ is sg-closed but not sga closed set of (X, τ) .

Theorem 3.14 Every $sg\alpha$ closed set is a gs-closed set.

Proof: The proof follows from the definition and the fact that every open set is α -open.

Remark 3.15 The converse of the above theorem need not be true as seen from the following example.

Example 3.16 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{c\}, \{a, c\}\}$. Then $A = \{b, c\}$ is gs-closed but not sga closed set of (X, τ) .

Theorem 3.17 Every $sg\alpha$ closed set is a gsp-closed set.

Proof: Let A be a sg α -closed set.Let A \subseteq U and U be open.Then A \subseteq U and U is α -open and scl (A) \subseteq U. Since every open set is α -open. A is sg α -closed.Then spcl (A) \subseteq scl (A) \subseteq U. Hence A is gsp-closed.

Remark 3.18 The converse of the above theorem need not be true as seen from the following example.

Example 3.19 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a, b\}\}$. Then $A = \{a\}$ is gsp-closed but not sga closed set of (X, τ) .

Theorem 3.20 The union of two sga-closed subsets of X is also sga-closed subset of X.

Proof: Assume that A and B are sga-closed set in X. Let U be α -open in X such that A \cup B \subset U. Then A \subset U and B \subset U. Since A and B are sga-closed, scl (A) \subset U and scl (B) \subset U. Hence scl (A \cup B) = (scl (A)) \cup (scl (B)) \subset U. That is scl (A \cup B) \subset U. Therefore A \cup B is sga-closed set in X.

Remark 3.21 The intersection of two sga-closed sets in X is generally not sga-closed set in X.

Example 3.22 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. If $A = \{a, b, c\}$ and $B = \{a, d, e\}$, then A and B are sga-closed sets in X, but $A \cap B = \{a\}$ is not a sga-closed set of X.

Theorem 3.23 If a subset A of X is sga-closed set in X. Then scl (A) |A does not contain any nonempty α -open set in X.

Proof: Suppose that A is sga-closed set in X. We prove the result by con-tradiction. Let U be a α -open set such that scl (A) $|A \supset U$ and $U = \phi$. Now $U \subset scl (A) |A$. Therefore $U \subset X |A$ which implies $A \subset X |U$. Since U is α -open set, X |U is also α -open in X. Since A is sga-closed set in X, by definition we have scl (A) $\subset X$ |U. So $U \subset X |scl (A)$. Also $U \subset scl (A)$. Therefore U $\subset (scl (A) \cup (X |scl((A))) = \phi$. This shows that, $U = \phi$ which is contradiction. Hence scl (A) |A does not contains any nonempty α -open set in X.

Remark 3.24 The converse of the above theorem need not be true seen from following example.

Example 3.25 If scl (A) |A contains no nonempty sg α -open subset in X, then A need not be sg α -closed set. Let X = {a,b,c,d,e} with topology $\tau = \{X, \varphi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$ and A = {a,b}. Then scl (A) |A = {a,b,c}| {a,b} = {c} does not contain nonempty α -open set in X, but A is not a sg α -closed set in X.

Corollary 3.26 If a subset A of X is $sg\alpha$ -closed set in X then scl (A) |A does not contain any open set in X but not conversely.

Proof: Follows from theorem 3.23 and the fact that every open set is α -open.

Corollary 3.27 If a subset A of X is $sg\alpha$ -closed set in X then scl (A) |A does not contain any non empty closed set in X but not conversely.

Proof: Follows from theorem 3.23 and the fact that every open set is α -open.

Theorem 3.28 For an element $x \in X$, the set $X \mid \{x\}$ is sga-closed or α -open.

Proof: Suppose $X | \{x\}$ is not α -open set. Then X is the only α -open set containing $X | \{x\}$. This implies sclX | $\{x\} \subset X$. Hence X | $\{x\}$ is sg α -closed set in X.

Theorem 3.29 If A is open and sga-closed then A is closed and hence α -clopen.

Proof: Suppose A is open and sga-closed. As every open is α -open and A \subset A, we have scl (A) \subset A. Also A \subset scl (A). Therefore scl (A) = A. That is A is α closed. Since A is open, A is α -open. Now cl (int (A)) = cl (A). Therefore A is closed and α -clopen.

Theorem 3.30 If A is sga-closed subset of X such that $A \subset B \subset scl (A)$. Then B is sga-closed set in X.

Proof: If A is sga-closed subset of X such that $A \subset B \subset scl (A)$. Let U be a α -open set of X such that $B \subset U$. . Then $A \subset U$. Since A is a sga-closed we have scl (A) $\subset U$. Now scl (B) \subset scl (scl (A)) = scl (A) $\subset U$. Therefore B is sga-closed set in X.

Theorem 3.31 If A is sga-closed and $A \subset B \subset$ scl (A), then B is sga-closed.

Proof: Let A be sga-closed and $B \subset U$, where U is a-open. Then $A \subset B$ implies $A \subset U$. Since A is sga-closed, scl (A) \subset U. B \subset scl (A) implies scl (B) \subset scl (A). Therefore scl (B) \subset U and hence B is sga-closed.

Remark 3.32 The converse of the theorem 3.31 need not be true in general as seen from following example.

Example 3.33 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \varphi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. A = $\{b\}$ and B = $\{b, c\}$. Then A and B are sga-closed sets in (X, τ) , but A \subset B is not subset in scl (A).

Theorem 3.34 Let A be a sg α -closed in (X, τ) . Then A is α -closed if and only if scl (A) |A is a α -open.

Proof: Suppose A is a α -closed in X. Then scl (A) = A and so scl (A) $|A = \varphi$, which is α -open in X. Conversely, suppose scl (A) |A is α -open set in X. Since A is sg α closed by theorem 3.23.scl (A) |A does not contain any non empty α - open in X. Then scl (A) $|A = \varphi$, hence A is α -closed set in X.

Theorem 3.35 If a subset A of topological space X is both α -open and sg α -closed, then it is α -closed.

Proof: Suppose a subset A of topological space X is both α -open and sg α - closed. Let $A \subset U$ with U is α open in X. Now $A \supset$ int (cl (int (A))), as A is α -open. That is scl (A) $\subset A \subset U$. Thus A is sg α -closed.

Corollary 3.36 Let A be α -open and sg α -closed subset in X. Suppose that F is α -closed set in X. Then $A \cap F$ is an sg α -closed set in X.

Proof: Let A be a α -open and sg α -closed subset in X and F be closed. By theorem 3.14, A is α -closed. So A \cap F is a α -closed and hence A \cap F is sg α -closed.

Theorem 3.37 In a topological space X, if $S\alpha O(X) = \{X, \phi\}$, then every subset of X is a sga-closed set.

Proof: Let X be a topological space and $S\alpha O(X) = \{X, \phi\}$. Let A be any subset of X. Suppose $A = \phi$. Then ϕ is sga-closed set in X. Suppose $A = \phi$. Then X is the only α -open set containing A and so scl (A) $\subset U$. Hence A is sga-closed set in X. **Remark 3.38** The converse of the above theorem need not be true in gen- eral as seen from the following example.

Example 3.39 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a, b\}, \{c, d\}\}$. Then every subset of (X, τ) is sga-closed set in X, But $S\alpha O(X, \tau) = \{X, \phi, \{a, b\}, \{c, d\}\}$.

Theorem 3.40 In a topological space $X, S\alpha O(X, \tau)$

 $\subset \{F \subset X : F^c \in \tau\}$ if and only if every subset of X is a sga-closed set.

Proof: Suppose that $S\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau \}$. Let A be any sub-set of X such that $A \subset U$, where U is a α -open. Then $U \in S\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau \}$. That is $U \in \{F \subset X : F^c \in \tau \}$. Thus U is a α -closed set, then scl (U) = U. Also scl (A) \subset scl (U) = U. Hence A is sga-closed set in X. Conversely, suppose that every subset of (X, τ) is sga-closed. Let $U \in S\alpha O(X, \tau)$. Since $U \subset U$ and U is sga-closed, we have scl (U) \subset U. Thus scl (U) = U and $U \in \{F \subset X : F^c \in \tau \}$. Therefore $S\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau \}$.

Definition 3.41 The intersection of all semi generalized α -open subsets of (X, τ) containing A is called the semi generalized α -kernal of A and is denoted by sg – r α ker (A).

Lemma 3.42 Let X be a topological space and A be a subset of X. If A is a α -open in X, then sg – r α ker (A) = A but not conversely.

Proof: Follows from definition 3.41.

Lemma 3.43 For any subset A of X ,sg – raker (A) \subset sg – raker (A).

Proof: Follows from implication $S\alpha O(X) \subset \alpha O(X)$.

Lemma 3.44 For any subset A of X, $A \subseteq sg - r\alpha ker$ (A).

Proof: Follows from definition 3.41.

Theorem 3.45 A subset A of (X, τ) is sga-closed if and only if scl (A) \subseteq sg – raker (A).

Proof: Suppose that A is sga-closed. Then scl (A) \subset U, whenever A \subset and U is α -open. Let $x \in$ scl (A). Suppose $x \notin$ sg – raker (A); then there is a α -open set U containing A such that x is not in U. Since A is sga-closed, scl (A) \subset U. We have x not in scl (A), which is a contradiction. Hence $x \in$ sg – raker (A) and so scl (A) \subset sg – raker (A). Conversely, Let scl (A) \subset sg – raker (A). If U is any α -open set containing A, then sg – raker (A) \subset U. That is scl (A) \subset sg – raker (A) \subset U. Therefore, A is sga-closed in X.

IV. REFERENCES

- D. Andrijevic, Semipre-open sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [2] S.P. Arya, T.M. Tour, Characterization of s-normal spaces, Indian J. Pure- Appl. Math, 21(8)(1990), 717-719.
- [3] P. Bhattacharya, B.K. Lahari, semi-generalized closed sets in topology, Indian. J. Math., 29(3)(1987), 375-382.
- [4] J. Dontchev, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi. Univ. ser. A. Math, 16(1995), 35-48.
- [5] R. James Munkres, Topology, Pearson Education Inc., Prentice Hall (2013).
- [6] N. Levine, Semi-open sets and Semi-continuity in topological spaces, American Mathematical Monthly, 70(1963), 36-41.
- [7] N. Levine, Generalized closed sets in topological spaces, Rend. circ. mat. palermo, vol 19(2),(1970) 89-96.
- [8] H. Maki, R. Devi, K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ, Ed. part III., 42(1993), 13-21.
- [9] H. Maki, R. Devi, K. Balachandran, Associated topologies of gener- alized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. sev. A. Math., 15(1994), 51-63.
- [10] H. Maki, J. Umehera, T. Noiri, Every Topological space is pre-t1/2, Mem. Fac. Sci. Kochi. Univ. ser. A. Math., 17(1996), 33-42.
- [11] A.S. Mashlour, M.E. Abd.EI- Monsef, S.N.EI. Deeb, On pre-continuous and weak pre-continuous mappings, proc. Math, phys. soc. Egypt, 53,(1982), 47-53.
- [12] O. Njastad, On Some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- [13] A. Vadivel, K. Vairamanikam, rgα-closed sets and rgα-open sets in Topo- logical spaces, Int.Journal of Math, Analysis, 3(2009), No37, 1803-1819.