:::j::LIJITE

ISSUE: 54, VOLUME 34, NUMBER 01, 2017

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

A Survey of Methods for Improving GPU Energy
Efficiency in Cloud Computing

Prof. Avinash Sharma® , Anchal Pathak ?

Y(Associate Professor) ,>(PG Scholar)
Department of CSE MITS, Bhopal, India

Abstract:In Cloud Computing, Recent years have witnessed a
phenomenal growth in the computational capabilities and
applications of GPUs. However, this trend has also led to
dramatic increase in their power consumption. This paper
surveys research works on analyzing and improving energy
efficiency of GPUs. It also provides a classification of these
techniques on the basis of their main research idea. Further, it
attempts t0 synthesize research works which compare energy
efficiency of GPUs with other computing systems e.g. FPGAs
and CPUs. The aim of this survey is to provide researchers with
knowledge of state-of-the-art in GPU power management and
motivate them 10 architect highly energy-efficient GPUs of
tomorrow. Dynamic Voltage Frequency Scaling (DVFS)
techniques are used t0 improve energy efficiency of GPUEs.
Literature survey and thorough analysis of various schemes on
DVFES techniques during the last decade are presented in this
paper. Detailed analysis of the schemes is included with respect
to comparison of various DVFS techniques over the years. To
endow Wwith knowledge of various power management
techniques that utilize DVFS during the last decade is the main
objective of this paper. During the study, we find that DVFS not
only work solely but also in coordination with other power
optimization techniques like load balancing and task mapping
where performance and energy efficiency are affected by
varying the platform and benchmark. Thorough analysis of
various schemes on DVFS techniques is presented in this paper
such that further research in the field of DVFS can be
enhanced.

Index Terms: GPU, DVFS, Power Consumption.

l. INTRODUCTION

Cloud environment is latest scenario in IT industry. It
indicates a computer model where users are provided with
computing resources. These services include three parts
like as Software as a Service, Platform as a Service and
Infrastructure as a Service. Figure 1 shows the relationship
of these services.

laaS locates in bottom scale of cloud systems and it
provides virtualized possessions such as storage,
bandwidth and memory etc. PaaS provides a higher level
of laaS to create a cloud securely programmable. SaaS is a
software delivery model [1]. As the importance of cloud
computing is growing bigger and bigger, there are many
researches are beginning. It is important to simulate the
presentation of cloud system. However, there are numerous
factors of a cloud infrastructure such as a hardware,
software and services. Therefore, it is hard to quantify the
presentation of cloud system.

User level
. . .
Cloud Application
Software
:SaaSJ web Analytics Docurnent
Platform Cloud Platform
[PaaS': Developrment] Data User
Tool Management Managerment
Cloud Resource
Infrastructure
|
(Iaas) it
Computer Server Network

v
System level

Figure 1: Services in cloud computing

As we enter into the post-petascale era, the requirements of
data processing and computation are growing
exponentially. To meet this requirement, researchers have
moved from serial execution platforms to high-
performance computing (HPC) platforms, such as multi-
core processors, FPGAs and GPUs etc. GPUs, in
particular, have been widely used for HPC applications due
to their extremely high computational powers, and a large
fraction of supercomputers in Top 500 list use GPU to
achieve unprecedented computational power in cloud.
Thus, GPUs have become integral part of today’s
mainstream computing systems.

1. RELATED WORK:

2.1. GPU Terminology and Sources of Power

Consumption

Recently, several researchers have proposed models and
tools for measurement and estimation of GPU power
consumption [Hong and Kim 2010;Ramani et al. 2007,
Nagasaka et al. 2010; Sheaffer et al. 2005a; Zhang et al.
2011; Jiao et al. 2010; Zhang et al. 2011; Chen et al. 2011,
Suda and Ren 2009; Enos et al. 2010; Wang and
Ranganathan 2011; Ren 2011; Ren et al. 2012; Luo and
Suda 2011; Pool et al. 2010; Stolz et al. 2010; Li et al.
2011; Wang and Chen 2012; Collange et al. 2009; Wang et
al. 2010; Vialle et al. 2011; Kasichayanula et al. 2012].
These models provide insights into the working of GPUs
and relative contribution of different components in the
total power consumption. In what follows, we briefly
review the GPU architecture, terminology and sources of

17

4 JITE

ISSUE: 54, VOLUME 34, NUMBER 01, 2017

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

power consumption, as relevant for this paper and refer the
reader t0 above mentioned works for more details.

A GPU has several streaming multiprocessors, each of
which has multiple cores. For example, NVIDIA GeForce
GTX 590 has dual GPUs; where each GPU has 16
streaming multiprocessors (SMs); each of these SMs have
32 cores; for a total of 512 cores in each GPU and 1024
cores in the overall GTX 590 graphics card [GeForce GTX
590 2013]. The cores of a typical GPU are composed of
ALUs, thread-schedulers, load/store units, scratchpad
memory, register file and caches etc. A GPU is designed
for stream or throughput computing, which has little data
reuse and hence, a GPU has much smaller sized cache (for
example 16KB L1 and 256KB L2 [Wong et al. 2010]) than
a typical CPU. The GPU is used as a co-processor with a
CPU and in such cases, GPU is referred to as the ‘device’
and the CPU as the ‘host’. A GPU has its own device
memory of a few GBs (gigabytes), and it is connected to
the host through a PCIl-Express (PCle) bus. A GPU is
programmed as a sequence Of kernels. The code is
executed in groups of 32 threads, called a warp. CUDA
(Compute Unified Device Architecture) and OpenCL
(Open Computing Language) are widely-used interfaces
for programming GPUs.

The power consumption of GPU can be divided into two
parts, namely leakage power and dynamic power. The
dynamic power is a function of operating temperature and
circuit technology. Leakage power is consumed when GPU
is powered, even if there are no runtime activities. The
dynamic power arises from switching of transistors and is
determined by the runtime activities. Different components
such as SMs and memories (e.g local, global, shared) etc.
contribute to this power consumption.

2.2. Need for Improving Energy Efficiency of GPUs

GPU power management iS extremely important for the
following reasons.

2.2.1. Addressing Inefficient Resource Usage: TO meet the
worst-case performance requirements, the chip designers
need to over-provision the computing resources of GPUSs;
however, on average, the utilization of these resources
remains low. Also, in several applications, memory
bandwidth of GPUs acts as a performance-bottleneck
[Hong and Kim 2010; Daga et al. 2011; Cebrian et al.
2012; Spafford et al. 2012], due to which the cores are not
fully utilized which leads to energy inefficiency. Further,
unlike massively parallel applications, regular parallel
applications do not scale well beyond a certain number of
cores and hence, a large amount of power is wasted in idle
cores Or in synchronization. Finally, GPUs are increasingly
being used in cloud infrastructure and data centers
[Amazon EC2 2013], which experience highly varying
usage patterns. Thus, dynamic power management

techniques can offset these sources of inefficiencies by
using runtime adaption.

2.2.2. Ensuring Reliability: Large power consumption has
significant effect on the reliability of the computing
systems. A 15 degree Celsius rise in temperature increases
the component failure rates by up to a factor of two
[Anderson et al. 2003]. The device failures may lead to
system malfunction and as GPUs become increasingly
employed in supercomputers and business services, system
malfunction may have serious economic impact. For
example, the service cost of merely one hour of downtime
in brokerage operations and credit card authorization can
be $6,450,000 and $2,600,000, respectively [Feng 2003].
Thus, since the performance-requirements grow at much
faster pace than the effectiveness of cooling solutions,
power management techniques are extremely important to
ensure longevity and reliability.

2.2.3. Providing Economic Gains: For every watt of power
dissipated in the computing equipment, an additional 0.5 to
1W of power is consumed by the cooling system itself
[Patel et al. 2003], and with increasing ratio of cooling
power to computing power, compaction of devices is
inhibited, which results in increased operation costs. Due
to these trends, in recent years, the energy cost of high-
performance computing clusters has been estimated to
contribute more than the hardware acquisition cost of IT
equipment itself [Bianchini and Rajamony 2004; Mittal
2012].

2.2.4. Enabling Performance Scaling: The power
challenges are expected to present most severe obstacle to
performance scaling and it has been shown that thermal
and leakage power constraints may disallow
simultaneously using all the cores of a massively parallel
processor [Esmaeilzadeh et al. 2013]. Large power
consumption may necessitate complex cooling solutions
(e.g. liquid cooling) which may increase chip complexity
and offset the benefits of performance boost obtained by
using GPUs.

M. TECHNIQUES FOR IMPROVING GPU
ENERGY EFFICIENCY IN CLOUD
COMPUTING

In this section, we discuss techniques for improving GPU
energy efficiency.

3.1. Overview

For the purpose of this study, we classify the techniques
into the following categories.

(1) DVFS (dynamic voltage/frequency scaling) based
techniques

(2) CPU-GPU workload division based techniques

18

4 JITE

ISSUE: 54, VOLUME 34, NUMBER 01, 2017

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

(3) Architectural techniques for saving energy in specific
GPU components, such as caches

(4) Techniques which exploit workload-variation to
dynamically allocate resources

(5) Application-specific and programming-level techniques
for power analysis and management

We now discuss these techniques in detail. AS seen
through the above classification, several techniques can be
classified in more than one groups. For sake of clarity, we
discuss them in one group only.

3.2. DVFS Based Techniques

Dynamic voltage and frequency scaling (DVFS) is a well-
known power-management technique which works by
dynamically adjusting the clock frequency of a processor
to allow a corresponding reduction in the supply voltage to
achieve power saving [Rabaey et al. 2002]. By intelligently
reducing the frequency, the voltage at which the circuit
needs to be operated for stable operation can also be
reduced, leading to power saving. However, since the
reduction in frequency also harms the performance, the
scaling of voltage/frequency needs to be carefully
performed. Also note that in some of the works discussed
below, the frequency scaling is actually applied to CPU;
however, we still include these works since the power
saving is achieved in the entire system and power
management of CPU is done while taking into account the
properties of GPU.

Nam et al. [2007] propose a low-power GPU for hand-held
devices. The proposed GPU uses logarithmic arithmetic to
optimize area and power consumption. The use of
logarithmic arithmetic leads to some computation error,
however, due to the small screen of the hand-held devices,
the error can be tolerated. They divide the chip into three
power domains, viz. vertex shadier, rendering engine and
RISC processor, and DVFS is individually applied to each
of the three domains. The power management unit decides
the supply voltage and frequency of each domain based on
its workload for saving power while maintaining the
desired performance level.

3.3. CPU-GPU Work Division to to Improve Energy
Efficiency

Researchers have shown that different ratios of work-
division between CPUs and GPUs may lead to different
performance and energy efficiency levels [Ma et al. 2012;
Luk et al. 2009]. Based on this observation, several
techniques have been proposed which dynamically choose
between CPU and GPU as a platform of execution of a
kernel based on the expected energy efficiency on those
platforms.

3.4. Saving Energy in GPU components

Several techniques make architecture-level changes to
GPUs to optimize the energy spent in individual
components of the GPU. These techniques utilize the
specific usage pattern of GPU components to make
runtime adaptation for saving energy. Gebhart et al. [2011]
present a technique for saving energy in core datapath of
GPU. Since GPUs employ a large number of threads,
storing the register context of these threads requires a large
amount of on-chip storage. Also, the thread-scheduler in
GPU needs to select a thread to execute from a large
number of threads. For these reasons, accessing large
register files and scheduling among a large number of
threads consumes substantial amount of energy. To address
this, Gebhart et al. present two improvements. First, a
small storage structure is added to register files which acts
like a cache and captures the working set of registers to
reduce energy consumption. Second, the threads are
logically divided into two types, namely, active threads
(which are currently issuing instructions or waiting on
relatively short latency operations), and pending threads
(which are waiting on long memory latencies). Thus, in
any cycle, the scheduler needs to consider only the active
threads which are much smaller in number. This leads to
significant energy savings.

3.5. Dynamic Resource Allocation Based Techniques

It is well-known that there exists large intra-application
and inter-application variation in the resource requirements
of different applications. In fact, real-world
applications rarely utilize all the computational capabilities
of GPU. Thus, significant amount of energy saving can be
achieved by dynamically adapting the components which
exhibit low utilization levels.

several

Hong and Kim [2010] propose an integrated power and
performance prediction system to save energy in GPUSs.
For a given GPU kernel, their method predicts both
performance and power; and then uses these predictions to
choose the optimal number of cores which can lead to
highest performance per watt value. Based on this, only
desired number of cores can be activated, while the
remaining cores can be turned-off using power-gating.
Note that power-gating is a circuit-level scheme to remove
leakage by shutting-off the supply voltage to unused
circuits.

3.6. Application-specific and
techniques

programming-level

It has been observed that source-code level transformations
and application-specific optimizations can significantly
improve the resource-utilization, performance and energy
efficiency of GPUs. Thus, by performing manually or
automatically optimizing GPU implementation and
addressing performance bottlenecks, large energy savings
can be obtained. Wang et al. [2010] propose a method for

19

4 JITE

ISSUE: 54, VOLUME 34, NUMBER 01, 2017

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

saving energy in GPU using kernel-fusion. Kernel fusion
combines the computation of two kernels into a single
thread. Thus, it leads to balancing the demand of hardware
resources, Which improves utilization of resources and
thus, improves the energy efficiency. The authors
formulate the task of kernel-fusion as a dynamic
programming problem, which can be solved using
conventional tools.

V. TOOLS RELATED TO GPU ENERGY
EFFICIENCY IN CLOUD:

There are various cloud computing tool can be used for
implement scheduling task.

A. CLOUDMIGXPRESS:

CloudMIG Xpress addresses those types of challenges and
supports method provide for the evaluation and preparation
phases to move around software techniques to PaaS or
laaS-based clouds scenario. It supplies from a rationally
model and is make to provide research in cloud
immigration. The basic characteristics are as follows:

e Extract code prototypes from jdk-based software
e Reproduce many cloud deployment options
e Compare the trade-offs

e Evaluate future values, response times, and SLA
violations

e Model the current technique deployment
e Create artificial workload profiles

e Model cloud scenarios with the help of cloud
profiles

e Model cloud atmosphere constraints
e Perform a static analysis to detect cloud violations
e Compare the suitability of different cloud profiles

e Graph-based visualization of searched cloud
violations

B. CLOUDSIM:

CloudSim is an extensible simulation model that provides
prototyping and imitation of Cloud computing technique
and application provisioning atmosphere. The CloudSim
simulator provides both system and activities modeling of
clouds mechanism like as information centers, virtual
machines and resource provisioning rules. It experiments
generic application provisioning methods that can be
elaborated with simplicity and limited attempt. Currently,
it provides prototyping and simulation of cloud atmosphere
including of both unit and inter-networked cloud system.
Moreover, it shows typical interfaces for experimenting
rules and provisioning approaches for allocation of virtual

machines belongs t0 inter-networked cloud systems. Many
researchers from organizations like as HP laboratory in US
are using CloudSim in their examination on cloud supply
provisioning and energy well-organized organization of
information center possessions. The convenience of
CloudSim is introduced by a case study consisting
dynamic condition of application services in the mixed
federated clouds atmosphere. The conclusions of this case
study prove that the cloud computing scenario efficiently
increases the application QoS requirements under swinging
supply and service insist patterns.

C. ICANCLOUD:

Basically iCanCloud is a simulation place aimed to
prototype and simulates cloud computing approaches,
which is objected to those programmers who deal nearly
with those types of systems. The main objective of
iCanCloud is to assume the trade-offs between cost and
effective performance of a given set of applications
performed in a specific hardware and then support to
programmers useful data about such values. Therefore,
iCanCloud can be used by a wide range of programmers
and users, from general active users to developers of more
distributed applications. The most desirable characteristics
of the iCanCloud simulation place consists the following:

e Both existing and non-existing cloud architectures
can be prototyped and simulated.

e A more flexible cloud hypervisor function
supports an easy technique for integrating and
testing both new and previous cloud brokering
rules.

e Custom VMs can be used to fast simulate uni-
core/multi-core systems.

e iCanCloud supports a wide area of configurations
for repository systems which consist prototypes
for local storage systems, isolated storage systems
like NFS and parallel repository systems like
parallel systems and RAID systems.

Some other cloud computing tool is as follows:
(1) SIMCLOUD:

(2) REALCLOUDSIM

(3) SIMCLOUD:

(4) VIMCLOUD:

(5) APACHE-ANT:

V. FUTURE RESEARCH TRENDS AND
CONCLUSION

We believe that in the near future, the challenges of GPU
power consumption would need to be simultaneously
addressed at different levels at the same time. At the chip-
design level, researchers are aiming to develop energy-

20

:::j::LIJITE

ISSUE: 54, VOLUME 34, NUMBER 01, 2017

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

efficient throughput cores and memory design to exploit
instruction-level, data-level and fine-grained task-level
parallelism. At the architecture level, CPU and GPU need
to be efficiently integrated on the same chip with unified
memory architecture [Foley et al. 2012; Yuffe et al. 2011].
This will address the memory bandwidth bottleneck and
also avoid the replicated chip infrastructure and the need of
managing separate memory spaces. At the programming
level, per-application tuning is inevitable to achieve a fine
balance between demands of the application and the
resources Of the GPU. Finally, at the system level, policies
for intelligent scheduling and work-division between CPU
and GPU are required, so that their individual
competencies are integrated and they complement each
other.

The 3D die stacking holds the promise of mitigating
memory bandwidth bottleneck in GPUSs, as it enables use
of shorter, high-bandwidth and power-efficient global
interconnect and provides denser form factor. 3D stacking
also enables integration of heterogeneous technologies,
which allows use of non-volatile memory (NVM), such as
phase change RAM (PCM) and spin transfer torque RAM
(STT-RAM) in the design of GPU memory [Mittal 2013].
NVMs consume negligible leakage power and provide
higher density than SRAM and DRAM, however, their
write latency and energy are significantly higher than those
of SRAM and DRAM. It is expected that leveraging the
benefits of 3D stacking and NVM would be a major step in
improving the energy efficiency of GPUs and it would
require novel solutions at device, architecture and system
level.

REFERENCES

[1] S. Jeschke, D. Cline, and P. Wonka, “A GPU Laplacian
solver for diffusion curves and Poisson image editing,” in
ACM Transactions on Graphics (TOG), vol. 28, no. 5.
ACM, 2009, p. 116.

[2] G. Barozzi, C. Bussi, and M. Corticelli, “A fast cartesian
scheme for unsteady heat diffusion on irregular domains,”
Numerical Heat Transfer, Part B: Fundamentals, vol. 46, no.
1, pp. 59-77, 2004.

[3] P. Bailey, J. Myre, S. Walsh, D. Lilja, and M. Saar,
“Accelerating lattice Boltzmann fluid flow simulations using
graphics processors,” in Parallel Processing, 2009. ICPP ’09.
International Conference on, Sept 2009,pp. 550-557.

[4] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G.
Latu, “Fast seismic modeling and reverse time migration on
a GPU cluster,” in High Performance Computing
Simulation, 2009. HPCS ’09. International Conference on,
June 2009, pp. 36-43.

[5] E. Elsen, P. LeGresley, and E. Darve, “Large calculation of
the flow over a hypersonic vehicle using a GPU,” Journal of
Computational Physics, vol. 227, no. 24, pp. 10 148 — 10
161, 2008.

[6] S. Venkatasubramanian and R. W. Vuduc, “Tuned and
wildly asynchronous stencil kernels for hybrid CPU/GPU

systems,” in Proceedings of the 23rd International

Conference on Supercomputing, ser. ICS ’09. New York,
NY, USA: ACM, 2009, pp. 244-255.

[7]1 M. Griebel and P. Zaspel, “A multi-GPU accelerated solver
for the three-dimensional two-phase incompressible navier-
stokes equations,” Computer Science - Research and
Development, vol. 25, no. 1-2, pp. 65-73, 2010.

[8] S. Donath, C. Feichtinger, T. Pohl, J. G'otz, and U. R"ude,
“A parallel free surface lattice Boltzmann method for large-
scale applications,” Parallel Computational Fluid Dynamics:
Recent Advances and Future Directions, p. 318, 2010.

[9] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany,
“Transformations to parallel codes for communication-
computation overlap,” in Proceedings of the 2005
ACM/IEEE conference on Supercomputing. IEEE Computer
Society, 2005, p. 58.

[10] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka,
“Physis: an implicitly parallel programming model for
stencil computations on large-scale GPU-accelerated
supercomputers,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International
Conference for. IEEE, 2011, pp. 1-12.

[11] M. Sourouri, S. B. Baden, and X. Cai, “Panda: A compiler
framework for concurrent cpu + gpu execution of 3d stencil
computations on gpu-accelerated supercomputers,”
International Journal of Parallel Programming, pp. 1-19,
2016. [Online]. Available: http://dx.doi.org/10.1007/s10766-
016-0454-1

21

