
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 31

Study of Resource Allocation with Optimize

Backfilling using Arbitrary Search in Grid

Computing
Sejal Yaduwanshi

1
, Prof. Avinash Sharma

2

1PG Scholar, 2Head and Associate Professor

1,2Dept. of CSE, MITS, Bhopal

Abstract- Grid computing, one of the most inventive phrase

used in IT, is emerging vastly distributed computational

paradigm. A computational grid provides a collaborative

environment of the hefty number of resources capable to do

high computing performance to reach the common goal. Grid

computing can be called as super virtual computer, it ensemble

large scale geographically distributed heterogeneous resources.

Resource allocation is a key element in the grid computing and

grid resource may leave at anytime from grid environment.

Despite a number of benefits in grid computing, still resource

allocation is a challenging task in the grid. This work

investigates to maximize the profits by analyzing how the tasks

are allocated to grid resources effectively according to quality

of service parameter and gratifying user requisition. A method

of schedule based backfilling load balancing with gap search

optimization algorithm has introduced to answer the above

raised question about the resource allocation problem based on

grid user requisition. The result of proposed method of SBBFP-

GS algorithm ameliorates the grid resource allocation.

Index Terms: Grid Computing, Resource Allocation,

Heterogeneous, Backfilling Load Balancing, Optimization.

I. INTRODUCTION

A computational grid is a large scale, heterogeneous

collection of autonomous systems, geographically

distributed and interconnected by heterogeneous networks.

A grid can be defined as a large-scale geographically

distributed hardware and software infra-structure

composed of heterogeneous networked resources owned

and shared by multiple administrative organizations which

are coordinated to provide transparent, dependable,

pervasive and consistent computing support to a wide

range of applications. These applications can perform

distributed computing, high throughput computing, on-

demand computing, data-intensive computing,

collaborative computing or multimedia computing.

Grid computing is a collection of computer resources from

different geographical location to achieve a common goal.

Computation grid uses network and combines

computational resources from different geographical

locations for distributed jobs. Job sharing (computational

burden) is one of the major difficult tasks in a

computational grid environment. Grid resource manager

provides the functionality for discovery and publishing of

resources as well as scheduling, submission and

monitoring of jobs. However, computing resources are

geographically distributed under different ownerships each

having their own access policy, cost and various

constraints.

Figure 1: Type of resources in a grid computing

II. LITERATURE WORK

B.Priya et. al, 2019, Grid Computing developed as a wide

scale circulated framework to offer powerful planned

assets sharing and elite figuring. Network arranges the

assets that are not liable to incorporated control. It utilizes

standard open, broadly useful conventions and its

interfaces. Matrix conveys non-trifling characteristics of

administration, for example, the reaction time, throughput,

accessibility and security. Network Computing is being

received in different regions from scholarly, industry

examination to government use. Lattices are turning out to

be stages for superior and conveyed figuring. Lattice

registering is the cutting edge IT framework that vows to

change the manner in which associations and people

Compute, impart and work together. The objective of Grid

figuring is to make the dream of a straightforward yet

enormous and amazing self-overseeing virtual PC out of a

huge assortment of associated heterogeneous frameworks

sharing different blends of assets. Booking is a bunch of

decides and arrangements that control the request by which

different positions are executed in a framework.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 32

Massimiliano Caramia et. al, 2018, Grid planning, that is,

the designation of circulated computational assets to client

applications, is one of the most testing and complex errand

in Grid registering. The issue of distributing assets in Grid

planning requires the meaning of a model that permits

neighborhood and outer schedulers to impart so as to

accomplish a productive administration of the assets

themselves. To this point, some monetary/market-based

models have been presented in the writing, where clients,

outside schedulers, and neighborhood schedulers haggle to

improve their targets. In this paper, we propose a

delicate/contract-net model for Grid asset portion,

demonstrating the connections among the included

entertainers. The exhibition of the proposed market-based

methodology is tentatively contrasted and a cooperative

allotment convention.

P. Keerthika et. al, 2017, Grid Computing gives consistent

and versatile admittance to wide-region dispersed assets.

Since, computational network shares, chooses and totals

wide assortment of topographically disseminated

processing assets and presents them as a solitary asset for

tackling enormous scope registering applications, there is a

requirement for a planning calculation which considers the

different necessities of matrix climate. Subsequently, this

exploration proposes another booking calculation for

computational lattices that considers load adjusting,

adaptation to internal failure and client fulfillment

dependent on the network design, asset heterogeneity,

asset accessibility and occupation attributes, for example,

client cutoff time. This calculation decreases the makespan

of the timetable alongside client fulfillment and adjusted

burden. A reproduction is led utilizing Grid Simulator

Toolkit (GridSim). The reenactment results shows that the

proposed calculation has better makespan, hit rate and

asset usage.

III. PROBLEM IDENTIFICATION

Load balance is also an important issue in grid

environment. The purpose of load balancing is to balance

the load of each resource in order to enhance the resource

utilization and increase the system throughput. The main

objective of load balancing methods is to speed up the

execution of applications on resources whose workload

varies at run time in unpredictable way. Hence, it is

significant to define metrics to measure the resource

workload. Every dynamic load balancing method must

estimate the timely workload information of each resource.

This is key information in a load balancing system where

responses are given to following questions:

1. How to measure resource workload?

2. What criteria are retaining to define this workload?

3. How to avoid the negative effects of resources

dynamicity on the workload.

4. How to take into account the resources heterogeneity in

order to obtain an instantaneous average workload

representative of the system?

V. PROPOSED METHODOLOGY

On the basis of above mentioned activities happened we

retrieve the current load information and the initial load

information from the database. Initial Status collect the

information about all connected nodes like resource entry

and job entry. Computation is done after the initial status

The basic algorithm of proposed work SBBFP-GS is as

follows:

[M’] = SBBFP-GS (Q, M)

// Q is the queue for incoming jobs

// M is a map between jobs and resource nodes

// M’ is the updated allocation map

Step 1: Initialize the status of all nodes (N).

Step 2: Initial status=.Previous

Step 3: While jobs=N and N>0 do

Step 4: if Current state is ready to change then

Step 5: Current = Get change state (); //Computation stage

Step 6: Threshold = generate threshold (upper bound,

lower bound); //Load Balancing

Step 7: Now Random Search Optimization technique apply

on Q.

7.1 Initialize random search parameter 0 on the basis of

current state and threshold value, initial point 0X Q

and iteration index k=0.

7.2 Generate a collection of candidate points 1kV Q 

according to a specific generator and associated sampling

distribution.

7.3 Update 1kX  based on the candidate points 1kV  ,

previous iterates and algorithmic parameters. Also updates

algorithm parameters 1k  .

7.4 If a stopping criterion is met then stop, otherwise

increment k and return to step 7.2.

Step 8: Through Gap Search, find the optimized job set in

queue Q.

Step 9: Get first job j from Q.

Step 10: while j null

Step 11:
jN  the number of nodes required by j;

Step 12: idleN  the number of idle nodes;

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 33

Step 13: if
j idleN N then remove j from Q and dispatch

it to any
jN idle nodes;

 Updates M accordingly;

 if j is not at the head of Q then

 insert j into Qbackfill;

 else

 Nbackfill<- the number of nodes running jobs

arriving later than j;

 if ()j backfill idleN N N  then

 Suspend jobs in Qbackfill that arrive later

than j and move then back to Q

 According to descending order of their

arrival time until the number of

 Idle node is greater than Nj;

 Remove j from Q and dispatch it to Nj idle

nodes;

 Update M;

Step 14: j<- get the next job from Q and goto step 10.

Step 15: Go to step 3 with decrement list of nodes N.

Step 16: M’ = M;

Step 17: Finally obtain the updated jobs and resource node

allocation map with required load balancing.

VI. RESULTS AND ANALYSIS

We can compare different load balancing technique with

our proposed technique. On the basis of load balancing

with scheduling method, FCFS (First Come First Serve)

and EASY Backfilling used as an existing technique and

Schedule Based Backfilling with Gap Search (SBBFP-GS)

used as a proposed method. There are four parameters are

here for compare results of different approaches.

(1) Average Machine Usage

(2) Job Cluster Uses/Day

(3) Number of Requested and Used CPU

(4) Number of Waiting and Running Jobs

Table 1: Average Machine Usage (in Percentage) with Different Load Balancing Strategies

Figure 2: Average Machine Usage (in Percentage) with FCFS, EASY Backfilling and Schedule Based Backfilling

Policy with Gap Search Strategies

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 34

As per above graph, proposed technique schedule based backfilling policy with gap search has more utilize machine

resources like CPU and other equipments as compare than FCFS and EASY Backfilling method.

Table 2: Job Cluster Uses per Day (in Percentage) with Different Load Balancing Strategies

Figure 3: Job Cluster Uses per Day (in Percentage) with FCFS, EASY Backfilling and Schedule Based Backfilling

Policy with Gap Search Strategies

As per above graph, proposed technique schedule based backfilling policy with gap search has more uses job clusters as

compare than FCFS and EASY Backfilling method.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 35

Table 3: Number of Requested and Used CPU (in Percentage) with Different Load Balancing Strategies

Figure 4: Number of Requested CPU with FCFS, EASY Backfilling and Schedule Based Backfilling Policy with

Gap Search Strategies

As per above graph, proposed technique schedule based backfilling policy with gap search has more requested CPU as

compare than FCFS and EASY Backfilling method.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 36

Figure 5: Number of Used CPU with FCFS, EASY Backfilling and Schedule Based Backfilling with Gap Search

Strategies

As per above graph, proposed technique schedule based

backfilling policy with gap search has more used CPU as

compare than FCFS and EASY Backfilling method.

VII. CONCLUSION AND Future WORK

The proposed SBBFP-GS Algorithm implements load

balancing for scheduling the jobs. Experiments have been

done for makespan that serves as a parameter for

evaluating the efficiency of the algorithm and finally

average resource utilization that serves as the evaluation

parameter for proper load balancing. From the results and

discussion section it is observed that load balance threshold

achieves a better result than the existing FCFS and EASY

Backfilling algorithms. The proposed SBBFP-GS

algorithm considers the load of each resource at the time of

scheduling which are very important in grid environment.

This can be extended in future with factors for reducing the

communication overhead of the grid system.

We showed the design and implementation of a protocol

(SBBFP-GS) for load balancing with scheduling in a

Computational Grid. The Grid is partitioned into a number

of clusters and each cluster has a coordinator to perform

local load balancing decisions and also to communicate

with other cluster coordinators across the Grid to provide

inter-cluster load transfers, if needed. Our results confirm

that the load balancing method is scalable and has low

message and time complexities. Our work is ongoing and

we are looking into using the proposed model for real-time

load balancing where scheduling of a process to a Grid

node should be performed to meet its hard or soft deadline.

REFERENCES

[1] B.Priya and Dr.T.Gnanasekaran, “Grid Architecture for

Scheduling and Load Balancing – An Assessment”, IEEE

Conference ICICES2014, Dec-2019.

[2] Massimiliano Caramia and Stefano Giordani, “Resource

Allocation In Grid Computing: An Economic Model”,

Wseas Transactions On Computer Research, Page 19-27,

Issue 1, Volume 3, January 2018.

[3] P. Keerthika And N. Kasthuri, “A Hybrid Scheduling

Algorithm With Load Balancing For Computational Grid”,

International Journal Of Advanced Science And

Technology, Vol.58, Pp.13-28, 2017.

[4] K. Sathish and A. Rama Mohan Reddy, “Maximizing

Computational Profit in Grid Resource Allocation using

Dynamic Algorithm”, Global Journal of Computer Science

and Technology Cloud and Distributed, Volume 13, Issue

2, 2016.

[5] Leyli Mohammad Khanli, Behnaz Didevar, “ A New

Hybrid Load Balancing Algorithm in Grid Computing

Systems”, International Journal of Computer Science

Emerging Technology, Vol-2 No 5, Page 304-309, October,

2015.

[6] Resat Umit Payli, Kayhan Erciyes and Orhan Dagdeviren,

“Cluster-Based Load Balancing Algorithms For Grids”,

International Journal Of Computer Networks &

Communications, Vol.3, No.5, Sep, Page 253-269, 2014.

[7] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load

Balancing Strategy for Grid Computing”, International

Journal of Computer, Electrical, Automation, Control and

Information Engineering Vol:2, No:7, 2013.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 95, VOLUME 71, NUMBER 01, NOVEMBER 2020

 37

[8] Ralf Diekmann, Andreas Frommer and Burkhard Monien,

“Efficient schemes for nearest neighbor load balancing”,

www.elsevier.com/locate/parco, 2012.

[9] U. Karthick Kumar, “A Dynamic Load Balancing

Algorithm in Computational Grid Using Fair Scheduling”,

International Journal of Computer Science Issues, Vol. 8,

Issue 5, No 1, September 2011

[10] Pawandeep Kaur and Harshpreet Singh, “Performance

Analysis of Adaptive Dynamic Load Balancing in Grid

Environment using GRIDSIM”, International Journal of

Computer Science and Information Technologies, Vol. 3

(3), Page 4473-4479, Apr-2011.

[11] Kai Lu, Riky Subrata and Albert Y. Zomaya, “On the

performance-driven load distribution for heterogeneous

computational grids", www.elsevier.com/locate/jcss, Feb-

2007.

[12] Priyanka Chauhan, Ritu Bansal, “Efficient Load Balancing

and Resource Scheduling for Optimizing Cost and

Execution Time Using ACO-A*Algorithm”, International

Journal of Recent Research Aspects ISSN: 2349-7688, Vol.

1, Issue 2, pp. 189-196, September 2010.

