Agricultural Disease Detection with Image Segmentation & Clustering By Ann Technique

Shivam Sem¹, Mr. Promod Patel², Mr. Akhilesh Singh Thakur³

¹M.Tech Scholar OCT, Bhopal, ²Associate Professor, OCT, Bhopal ³HOD EC, OCT, Bhopal

Abstract - The agriculture sector is the main contributor in Indian economy and doing well in white, green and blue revolution. According to APEDA by 2017 export of Indian agriculture will reach to 6% of total production of the world and rank 10th in the ranking [1]. Agriculture plays very important role in the provision of food surplus to expanding population, contribution to capital formation, provides raw material to industries, market for industrial products and major contribution in international trade. With increasing population, even though the contribution is continuously falling since independence from 55.1% in 1950 to 14% in 2012, it remained the major employment sector with a marginal difference. So there is a need to accelerate the pace for competitive, productive, diversified and sustainable agriculture. Raising agricultural productivity per unit of land, reducing rural poverty through a socially inclusive strategy and ensuring that agricultural growth responds to food security needs are three major challenges for Indian agriculture

Keyword:- Segmentation, Detection, Agricultural.

I. INTRODUCTION

The agricultural land mass is something other than being a nourishing sourcing in this day and age. Indian economy is profoundly reliant of horticultural efficiency. Consequently in field of agribusiness, location of infection in plants assumes an imperative part. To identify a plant ailment in extremely introductory stage, utilization of programmed malady recognition system is gainful. For example an illness named little leaf infection is an unsafe malady found in pine trees in United States. The influenced tree has a hindered development and kicks the bucket inside 6 years. Its effect is found in Alabama, Georgia parts of Southern US. In such situations early location could have been productive. The current strategy for plant sickness recognition is essentially bare eye perception by specialists through which recognizable proof and identification of plant infections is finished. For doing as such, an expansive group of specialists and in addition consistent checking of plant is required, which costs high when we do with extensive ranches. In the meantime, in a few nations, ranchers don't have legitimate offices or even thought that they can contact to specialists. Because of which counseling specialists even cost high and also tedious as well. In such conditions, the proposed method turns out to be gainful in observing substantial fields of yields. Programmed location of the ailments by simply observing

the indications on the plant leaves makes it simpler and in addition less expensive.

II. LITERATURE SURVEY

Neural network procedures have been effectively pertinent to the conclusion of a few restorative issues. In this study we dissect the diverse neural system strategies for the determination of diabetes.. The different information prepreparing strategies are assessing to enhance the speculating exactness of the neural system calculations. Plant nutrients are essential for the healthy growth of any plant. The plant takes up different nutrients from various sources. It shows visible symptoms on leaves in deficiency as well as toxicity.

2.1 Plant Nutrition

JITE

Plant growth and metabolism depends on 17 elements or nutrients even though 60 elements are found in the chemical analysis of plant tissues. Nutrients keep plants healthy which leads to less susceptibility to pests. Nutrients are broadly classified into two: Macro and micro nutrients. Macronutrients are those elements which are required in larger quantity whereas micronutrients are required in lesser quantity [5,6].

2.2 Detection Diseases Computing Techniques

Detection of plant disease through some automatic technique is beneficial as it reduces a large work of monitoring in big farms of crops, and at very early stage itself it detects the symptoms of diseases i.e. when they appear on plant leaves. This paper presents an algorithm for image segmentation technique which is used for automatic detection and classification of plant leaf diseases. It also covers survey on different diseases classification techniques that can be used for plant leaf disease detection.

2.3 Image Processing Based Leaf Disease, Detection

This paper describes the steps to achieve an efficient and inexpensive system acceptable to the farmers and agricultural researchers as well for studying leaf rot disease in betel vine leaf. In this paper, we have implemented Otsu thresholding based image processing algorithm for segmentation of leaf rot diseases in betel vine leaf. The proposed method was successfully applied to twelve leaf image with very high precision. The proposed scheme will be helpful in the diagnosis of leaf disease. A leaf disease severity11 scale can be prepared by calculating the total leaf area12, 13and finding the percentage diseased area.

2.4 Image Processing Technique of Betel Leaf

This paper includes the easy, accurate, and less expensive method of leaf area measurement. Leaf area of plants is a useful tool in physiological and agronomic studies. Investigation of betel leaf area is done over 100 leaves out of which some are included in this paper. Results are compared with the graphical technique of leaf area measurement.

2.5 Cotton Leaves Using Clustering Method

In this proposal initially preprocessing the input image using histogram equalization is applied to increase the contrast in low contrast image, K-means clustering algorithm is used for segmentation which classifies objects based on a set of features into K number of classes and finally classification is performed using Neural-network. Thus image processing technique is used for detecting diseases on cotton leaves early and accurately. It is used to analyze the cotton diseases which will be useful to farmers. Study of diseases on the cotton leaf can robustly studied by using the image processing toolbox and also the diagnosis by using MATLAB helps us to suggest necessary remedy for that disease arises on the leaf of cotton plant.

2.6 Rice Disease Using Image

The proposed method is useful in crop protection especially large area farms, which is based on computerized image processing techniques that can detect diseased leaves using color information of leaves. It can be summarized by capturing an image of a certain plant leaf followed by extracting feature from the captured image then convert rgb to gray image & resize it, Create stem, stirs, canny edge detection, apply various comparison techniques, which would decide the disease and would also detect the type of plants diseases at early stages and enables early control and protection measures. This is an accurate and efficient technique for automatically detection of plant diseased. Rice leaf diseased is detected by using stem, stairs, canny edge detection, surf, entropy, warp, images techniques of image processing.

III. COLOR IMAGE PROCESSING (CIP)

Color is a powerful descriptor of an object and has an advantage over gray scale. Color information is an important feature like shape, texture which has been successfully used for many image processing applications like object recognition, image matching, CBIR, color image compression. The object in the scene as perceived by human eyes or the camera system is characterized by its radiance R (λ , x, y, t) where λ is the wavelength of the electromagnetic radiation at position (x, y) and at time t for a particular color.

The fundamental difference between color image and gray image is the values assigned. For color images in color space a color vector is assigned to a pixel where as in gray image a gray value is assigned. Thus in Color Image Processing vector valued functions are used. Depending on the principles of processing CIP can be broadly classified into two classes [8].

1.Monochromatic- based techniques: Planes are treated separately and the results are combined.

2. *Vector- valued techniques*: Image is considered as a vector value.

1. Color Image Analysis

a. RGB Color Space

RGB color space is the most commonly used color space for computer application which uses the mixing of three primary colors viz. Red, Green and Blue with wavelength 700, 546.1 and 435.8 respectively. The model is based on the Cartesian coordinate system. Visible colors and wavelengths are not equivalent. In the RGB color space the color image is treated as the vector for three components R, G and B. Digital color image

Figure 2.1: RGB color space

b. CMYK color space

Cyan, Magenta and Yellow are the secondary colors of light or primary colors of pigment. Pure Cyan, Magenta and yellow do not reflect red, green and blue colors respectively. Addition of black color leads to CMYK model which forms base for printing process.

Figure 2.2: CMYK color space

c. HSI color space

HSI model decouples the intensity from color carrying information (hue and saturation). Hue represents the dominant color, Saturation represents the purity (amount of white added) and I represents the relative brightness. Saturation depends upon the wavelengths of color. Wider the wavelength range the purity is lower and vice versa. HSI color space separates the chromatic and achromatic information in color images. Existence of singularities is the disadvantage of HSI model.

Figure 2.3: RGB color space

d. HSV color space

Fields of computer vision and computer graphics are always interested in color spaces which intuitively represents human color perception. Colors can be easily described in this color space compared to RGB or CMYK color space. HSV color space is also known as HSB color space with hue, saturation and brightness coordinates.

Figure 2.3: RGB color space

2. Segmentation Techniques

In segmentation phase, the image (such as multiresolution, multispectral) is divided into its constituent parts as shown in figure (3.1).

Figure 3.1: Typical Image Segmentation

a. Region Based Segmentation Method

The region based segmentation methods are the methods that segments the image into various regions having similar characteristics. There are two basic techniques based on this method [3] [8] [26].

Figure. 3.2 Division of regions based on quad tree

b. Clustering Based Segmentation Method

The clustering based techniques are the techniques, which segment the image into clusters having pixels with similar characteristics. Data clustering is the method that divides the data elements into clusters such that elements in same cluster are more similar to each other than others. There are two basic categories of clustering methods: Hierarchical method and Partition based method. The hierarchical methods are based on the concept of trees. In this the root of the tree represents the whole database and the internal nodes represent the clusters.

3. List of plant diseases

Infectious plant diseases are caused by bacteria, fungi, or viruses and can range in severity from mild leaf or fruit damage to death. The following is a list of some of the major plant diseases, grouped by type of causative agent and ordered alphabetically.

a. Bacterial

- Aster yellows
- Bacterial wilt
- Blight
 - Fire blight
 - Rice bacterial blight
- Canker
- Crown gall
- Rot
 - Basal rot
- Scab
- b. Fungal
 - Anthracnose

- Black knot
- Blight
 - Chestnut blight
 - Late blight
- Canker
- Clubroot
- Damping-off
- Dutch elm disease
- Ergot
- Fusarium wilt
 - Panama disease
- Leaf blister
- Mildew
 - Downy mildew
 - Powdery mildew
- Oak wilt
- Rot
 - ➢ Basal rot
 - ➢ Gray mold rot
 - ➢ Heart rot
- Rust
 - blister rust
 - cedar-apple rust
 - ➢ Coffee rust
- Scab
 - Apple scab
- Smut
 - Bunt
 - Corn smut
 - Snow mold
 - Sooty mold
- Verticillium wilt
- c. Viral
 - Curly top
 - Mosaic
 - Psorosis
 - Spotted wilt

d. Diseases type 1 –Alternaria

Alternaria alternata, has been confined from various sorts of natural materials in soggy circumstances, including materials, put away sustenance, canvas, cardboard and paper, electric links, polyurethane, fly fuel, sewage and effluents. Alternaria alternata causes dark spot in numerous foods grown from the ground far and wide. It is an inactive organism that creates amid the cool stockpiling of natural products, getting to be obvious amid the promoting time frame along these lines causing extensive postharvest misfortunes.

Figure 4.1 Sample Image

e. Diseases type 2 - Bacterial

The problem can be cyclic but is rarely fatal. Anthracnose fungus infects many deciduous and evergreen trees and shrubs, as well as fruits, vegetables and grass. Anthracnose is noticeable along the leaves and the veins as small lesions. These dark, sunken lesions may also be found on stems, flowers and fruits. In order to distinguish between anthracnose and other leaf spot diseases, you should carefully examine the undersides of leaves for a number of small tan to brown dots, about the size of a pin head. If you are unsure about diagnosing anthracnose, consult your local Cooperative Extension office for assistance and additional anthracnose disease info.

Figure 4.2 Sample of Anthracnose

IV. PARMETER TO BE CALCULATED

By this experimental various parameter is to be calculated according to requirement the no of parameter is to be increased.

1. Mean Calculation: - The mean is the average of all numbers and is sometimes called the arithmetic mean. To calculate mean, add together all of the numbers in a set and then divide the sum by the total count of numbers.

2. *Standard Deviation calculation* - Standard deviation is a measure of dispersement in statistics. "Dispersement" tells you how much your data is spread out. Specifically, it

shows you how much your data is spread out around the mean or average. For example, are all your scores close to the average? Or are lots of scores way above (or way below) the average score?. Standard deviation represented by σ .

3. *Root Mean Square Calculation* - For a set of numbers or values of a discrete distribution ,the root-mean-square (abbreviated "RMS" and sometimes called the quadratic mean), is the square root of mean of the values .

4. *Entropy Calculation* - In this situation, **entropy** is defined as the number of ways a system can be arranged. The higher the entropy (meaning the more ways the system can be arranged), the more the system is disordered.

5. *Kurtosis Calculation* - kurtosis is a statistical measure that is used to describe the distribution. Whereas skewness differentiates extreme values in one versus the other tail, kurtosis measures extreme values in either tail.

6. Skewness Calculation - Skewness is a term in statistics used to describes asymmetry from the normal distribution in a set of statistical data. Skewness can come in the form of negative skewness or positive skewness, depending on whether data points are skewed to the left and negative, or to the right and positive of the data average.

7. Correlation Calculation :- Related. For example, height and weight are related; taller people tend to be heavier than shorter people. The relationship isn't perfect. People of the same height vary in weight, and you can easily think of two people you know where the shorter one is heavier than the taller one. Nonetheless, the average weight of people 5'5" is less than the average weight of people 5'6", and their average weight is less than that of people 5'6", etc. Correlation can tell you just how much of the variation in peoples' weights is related to their heights.

8. *Energy calculation* - Leaf is a renewable energy and sustainable technology investment firm providing venture and growth capital across the renewable energy industry to support innovative, well-managed, rapidly-growing companies. Leaf is backed by some of the world's leading institutional investors.

9. *Homogeneity Calculation* - In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities.

10. Variance Calculation- In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its mean. Informally, it measures how far a set of (random) numbers are spread out from their average value. Variance has a central role in

statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling.

V. SIMULATION RESULT

1. GUI Representation - GUIs (also known as graphical user interfaces or UIs) provide point-and-click control of software applications, eliminating the need to learn a language or type commands in order to run the application. MATLAB apps are self-contained MATLAB programs with GUI front ends that automate a task or calculation.

Figure 5.1 Graphical User Interfaces for proposed work

Figure 5.2 Image Graphical User Interfaces for proposed work

2. *Simulation Result of Object One & Two* :- Cucurbits and Cherrey object we can take for result simulation we can calculate various parameter.

Figure 5.3 (a) Original Banana image (b) Enhance contrast Image

Figure 5.4 (a) Banana cluster 1 (b) Banana cluster 2 (c) Banana cluster 3

Figure 5.5 (a) Original Tamoto image (b) Enhance contrast Image

Figure 5.6. (a) Tamoto cluster 1 (b) Tamoto cluster 2 (c) Tamoto cluster 3

3. Various Parameter Representation of Object One & Two- Object One and Object

Two various result represent in the table.

Parameter	Banana			Tamoto		
	Cluster 1	Cluster 2	Cluster 3	Cluster 1	Cluster 2	Cluster 3
Mean	23.2139	44.2283	21.2669	43.5312	56.0461	18.8179
Standard Daviation	66.5441	62.5007	34.3992	75.8584	67.752	53.483
RMS	6.58276	10.106	8.92816	8.12681	11.7598	5.19274
Entropy	1.93	4.38655	3.27084	2.88409	5.33461	1.78971
Kutosis	10.4199	3.69662	4.93272	3.30907	3.22933	11.0254
Contrast	0.40746	0.508824	1.54856	1.6706	1.92381	0.576072
Variance	3591.88	3213.28	841.182	5286.29	4391.17	2227.97
Correlation	0.940721	0.919914	0.845914	0.833524	0.732962	0.845276
Energy	0.718666	0.319507	0.456883	0.489647	0.216789	0.686281
Homogeneity	0.973278	0.935685	0.952956	0.900646	0.817553	0.954567
Smoothness	1	1	1	1	1	1
Skewness	3.01285	1.29476	1.57327	1.38143	1.08424	2.9975
IDM	255	255	255	255	255	255
Classification Result	Alternaria Alternata	Healthy Leaf	Healthy Leaf	Cercospora Leaf Spot	Cercospora Leaf Spot	Alternaria Alternata
Affected Region	16.4892	None	None	22.3008	15.0046	15.0015
Accuracy in %	98.3871	96.7742	98.3871	98.3871	98.3871	96.7742

VI. CONCLUSIONS

The method reported in the thesis can be used to design a soya bean expert system for farmers for the early detection of plant foliar infection, infection grading and getting the appropriate cure remotely.Through the thesis work, we have tried to highlight the problems associated with the cultivation of soybean and causes of low yield loss in the developing countries like India. It has been taken-up six soya plant foliar diseases, namely; Rust, Bacterial Blight, Sudden Death Syndrome, Brown Spot, Downy Mildew, and Frog Eye, which are mainly responsible for significant yield loss; it has been proposed a fully automatic method for identification and classification by different digital image processing techniques and also to classify the disease severity level using five classes. It has been derived and development various new parameters and indices like DSI, IPR, DLP, which are subsequently used for disease level prediction.

REFERENCES

- Singh, Vijai, and A. K. Misra. "Detection of plant leaf diseases using image segmentation and soft computing techniques." Information Processing in Agriculture 4, no. 1 (2017): 41-49.
- [2]. Dey, Amar Kumar, Manisha Sharma, and M. R. Meshram. "Image processing based leaf rot disease, detection of betel vine (Piper BetleL.)." *Procedia Computer Science* 85 (2016): 748-754.
- [3]. Soni, Amar Prasad, Amar Kumar Dey, and Manisha Sharma. "An image processing technique for estimation of betel leaf area." In *Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015 International Conference on*, pp. 1-5. IEEE, 2015.
- [4]. PawanP.Warne, Dr.S.R. Ganorkar" Detection of Diseases on Cotton Leaves Using K-Mean Clustering Method", International Research Journal of Engineering and Technology(IRJET) Volume: 02 Issue: 04 | July-2015, 425-431.
- [5]. SmitaNaikwadi, NiketAmoda," Advances In Image Processing For Detection Of Plant Diseases,"International Journal of Application or Innovation in Engineering & Management (IJAIEM) Volume 2, Issue 11, November 2013.,168-175
- [6]. Anand.H.Kulkarni, AshwinPatil R. K., applying image processing technique to detect plant disease. International Journal of Modern Engineering Research (IJMER) Vol.2, Issue.5, SepOct. 2012 pp-3661-3664 ISSN: 2249-6645
- [7]. Ghaiwat Savita N, Arora Parul. Detection and classification of plant leaf diseases using image processing techniques: a review. Int J Recent Adv Eng Technol 2014;2(3):2347–812. ISSN (Online).
- [8]. Dhaygude Sanjay B, Kumbhar Nitin P. Agricultural plant leaf disease detection using image processing. Int J Adv Res Electr Electron Instrum Eng 2013;2(1).
- [9]. Mrunalini R Badnakhe, Deshmukh Prashant R. An application of K-means clustering and artificial intelligence in pattern recognition for crop diseases. Int Conf Adv Inf Technol 2011;20. 2011 IPCSIT.
- [10]. Arivazhagan S, Newlin Shebiah R, Ananthi S, Vishnu Varthini S. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric Eng Int CIGR 2013;15(1):211–7.

AUTHORS PROFILE

Shivam Sen has received his Bachelor of Engineering degree in Electronics & Communication Engineering from Oriental College Bhopal in the year 2014. At present he is pursuing M.Tech. with the specialization of Electronics &Communication Engineering in Oriental College of Technology, Bhopal. His area of interest Digital Image Processing, Artificial Intelligent,

Mr. Promod Patel has received his BE degree from GEC REWA, in the year 1996. M.Tech. in from MANIT, Bhopal, in the year 2009 and Perusing PhD from MANIT Bhopal, At present he is working as an Associate Professor in Electronics & Communication Department at Oriental College of Technology, Bhopal. His area of interest VLSI,Microelectronics & Artificial Intelligent.

Mr. Akhilesh Singh Thakur has received his BE degree, in the year 2005. M.Tech. from NIIST,Bhopal, in the year 2011 At present he is working as an HOD at Oriental College of Technology, Bhopal. His area of interest Digital Image Processing, Artificial Intelligent, Soft computing.