
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
ISSUE: 58, VOLUME 38, NUMBER 01, FEBRUARY 2018

 58

An Extensive Survey On Efficient Retiming of
Fixed-Point Circuits

Kshipra Tiwari1, Prof. Sharad Mohan Shrivastava 2
1MTech. Scholar, 2Research Guide

Department of Electronics and Communication Engineering, SISTEC, Bhopal

Abstract- The rapid growth of semiconductor technology has
fuelled large scale VLSI innovation in the electronic product
design domain. The electronic gadgets available in the market
today are not only useful in their own right but there is intense
competition between various industries for making them
efficient, multi-functional and less expensive. In order to keep
up with the increasing competition, the product design
engineers find themselves in a perpetual cycle of design and
product delivery. With every iteration of the cycle, the designers
need to work with increased technological complexity while aim
to deliver more value for every unit cost that charge from the
consumer. The present research addresses the problem of
assigning optimal fixed-point number formats to operations for
the implementation of a given signal processing system, graphic
processing system etc. keeping in mind both correct
functionality and being able to meet the desired performance
parameters.

Keywords- Cutset retiming, digital signal processing (DSP)
hardware, fixed-point arithmetic, retiming, GPU, FFT.

I. INTRODUCTION

With the advances in integrated circuit (IC) technology,
more than 10 million devices can be manufactured on a
single chip today. Because of this increase in the
complexity, Very Large Scale Integration (VLSI) circuit
designs require sophisticated Electronic Design
Automation (EDA) tools capable of handling large
circuits. Due to the increase in complexity and reduced
time to market, designers cannot rely on their intuition to
design fast, low power sequential circuits with minimum
area. Thus circuit optimization tools are indispensable for
designers, and much work needs to be done to develop
good computer-aided design (CAD) tools. Most of the
traditional circuit optimization techniques operate on
combinational sub-circuits extracted from sequential
designs. Thus to limited capabilities for optimization and
true sequential optimization techniques are needed. This
work develops CAD tools for optimizing large sequential
circuits.

Retiming is a powerful transformation that has great
potential for sequential circuit optimization. It is the
concept of moving storage devices across computation

nodes to improve performance without changing the input-
output behavior, and can operate at gate level netlists or
higher abstractions (e.g. data flow graphs, communication
graphs, processor schedules).

At the circuit level these storage devices are called
registers which can be either edge- triggered flip-flops (or
FF’s) or level sensitive latches (or latches), and the
computation nodes are combinational gates. Retiming
moves registers across gates without changing the number
of registers in any cycle or on any path from the primary
inputs to the primary outputs. This preserves the input-
output latency of the circuit. Since retiming does not
directly affect the combinational part of the circuit the
circuit behavior remains unchanged. However since
retiming can change the boundaries of combinational
logic, it has the potential to affect the results of
combinational synthesis as well.

Retiming can be performed to improve the circuit behavior
with respect to different objective functions. Some of these
objective functions are discussed below.

A. Clock Period

The simplest objective function used in retiming is
minimization of the clock period. Since the clock period in
an edge-triggered circuit is given by the maximum
combinational delay, registers can be relocated to reduce
the clock period.

Figure 1.1 retiming effects on clock period.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
ISSUE: 58, VOLUME 38, NUMBER 01, FEBRUARY 2018

 59

For the circuit shown in Figure 1.1 (a), with unit delay
gates, the clock period is 3.0 time units. If relocate register
LI from the output of gate G3 to its input, get the circuit in
Figure 1.1 (b). with a clock period of 2.0 units. Thus
relocating registers can reduce the clock period of a circuit,
and retiming can be used to minimize the clock period.

Retiming to minimize the clock period is termed
minperiod retiming. Notice that the input-output behavior
is not changed by retiming since in both cases the output is
produced after 2 clock cycles. Retiming a circuit to
achieve a given target clock period is a special case of this
problem.

B. Area

Since retiming does not affect the combinational part of
the circuit, the area overhead of the combinational part
remains constant. Retiming can. However, affect the
overall area of the circuit since it can alter the number of
registers in the circuit.

Two circuits can have the same input-output behavior and
clock period, but require different number of registers. To
illustrate this consider the circuits in Figure 1.2 which are
equivalent under the retiming transformation. The circuit
in Figure 1.2 (a) requires two registers while that in Figure
1.2 (b) requires only one register.

Figure 1.2 Effect of retiming on number of registers.

Retiming can therefore be used to minimize the number of
registers in the circuit. This can be done without any
constraint on the clock period of the resulting circuit, or
subject to a target clock period. The former is called
unconstrained min area retiming while the latter is called
constrained min area retiming or simply min area retiming.

C. Power

The power dissipated in a circuit depends on the product of
switching activity and the load capacitance at the output of
a gate, summed over all gates. Since registers can filter out
glitches, relocation of registers will affect the switching
activity at gate outputs. In addition relocating registers also
changes the load capacitance seen by gates. Thus retiming
can change the power requirements of a circuit, and can be
used for reducing the power dissipation in sequential

circuits by placing registers on interconnections with high
switching activity and high capacitive loads.

II. RETIMING DATA FLOW GRAPHS

In data-flow-graph representations, the nodes represent
computations (functions or subtasks) and the directed
edges represent data paths (communication between
nodes).

Retiming changes the location of registers (delay elements)
in a circuit in an attempt to balance the logic depth
between sequential elements and minimize the critical
path. A valid retiming solution must not change the
input/output functionality of the DFG.

Retiming is mainly used to reduce the critical path in
synchronous circuits. The critical path of the filter in Fig.
2.1(a) (shown by the dashed line) passes through one
multiplier and one adder and has a computation time of 3
u.t. The retimed filter in Fig. 2.1(b) has a critical path that
passes through two adders and has a computation time of 2
u.t.

Figure 2.1 (a) Original DFG (b) Retimed DFG.

A. Mathematical Model for Retiming

Retiming maps a data-flow-graph G to a retimed graph Gr.
A retimed solution is characterized by a value r(U) known
as the retiming weight for each node U in the graph. Let
𝜔𝜔(𝑒𝑒) denote the weight of the edge e in the original graph
G, and let 𝜔𝜔𝑟𝑟(𝑒𝑒) denote the weight of the edge e in the
retimed graph Gr. The weight of the edge e : U → V in the
retimed graph is computed from the weight of the edge in
the original graph using

𝜔𝜔𝑟𝑟(𝑒𝑒) = 𝜔𝜔(𝑒𝑒) + 𝑟𝑟(𝑉𝑉) − 𝑟𝑟(𝑈𝑈) 𝑟𝑟(𝑉𝑉), 𝑟𝑟(𝑈𝑈) … … … … . (1)

Where Z is the set of Integers.

The retiming values r(1) = 0, r(2) = 1, r(3) = 0 and r(4) =
0 translates the DFG in Fig. 2.1(a) to the retimed DFG in
Fig. 2.1(b). Retiming does not alter the architecture of the
design, hence the incidence and loop matrices for the
design remain for the original and retimed DFG. However,

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
ISSUE: 58, VOLUME 38, NUMBER 01, FEBRUARY 2018

 60

the weights on the edges change and it is the weight vector
which is transformed during retiming.

A retiming solution is feasible if 𝜔𝜔𝑟𝑟(𝑒𝑒) ≥ 0 holds for all
edges. It can be proved that retiming does not alter the

total number of delays in a loop of the DFG . This would
mean that for a given loop in the DFG the sum of delays
on the edges of the loop will remain unchanged after
retiming.

III. LITERATURE REVIEW

SR.
NO. TITLE AUTHOR YEAR METHODOLODY

1
On Efficient Retiming of Fixed-
Point Circuits,

P. K. Meher, 2016

Connected component timing model to
obtain adequately precise estimates of
propagation delays across different
combinational paths in a DFG easily

2
Low-complexity CRC-aided early
stopping unit for parallel turbo
decoder,

H. Kim, Y.
Lee and J. H.

Kim,
2015

CRC architecture is implemented in 65 nm
CMOS process for radix-22 and radix-24
parallel turbo decoders based on LTE-
Advanced.

3

Fine-Grained Critical Path
Analysis and Optimization for
Area-Time Efficient Realization
of Multiple Constant
Multiplications,

X. Lou, Y. J.
Yu and P. K.

Meher,
2015

The DOCO is applied to each searched
additional fundamental set to optimize the
configuration of the corresponding shift-
add network.

4
Critical-Path Analysis and Low-
Complexity Implementation of
the LMS Adaptive Algorithm,

P. K. Meher
and S. Y. Park,

2014

The critical path of the least-mean-square
(LMS) adaptive filter for deriving its
architectures for high-speed and low-
complexity implementation

5
Efficient Retiming of Multirate
DSP Algorithms,

X. Y. Zhu, T.
Basten, M.

Geilen and S.
Stuijk,

2012
A lower iteration period implies a faster
execution of a DSP algorithm with
synchronous dataflow graphs (SDFGs)

6
Static Rate-Optimal Scheduling
of Multirate DSP Algorithms via
Retiming and Unfolding

X. Y. Zhu, M.
Geilen, T.

Basten and S.
Stuijk,

2012
An exact method and a heuristic method for
static rate-optimal multiprocessor
scheduling of real-time multi rate DSP

7
A Fast Retiming Algorithm
Integrated with Rewiring for Flip-
Flop Reductions,

Y. Diao and Y.
Wu, 2011

A fast retiming algorithm which avoids
solving MILP, and with both gate and
interconnect delay formulated together.

P. K. Meher,[1] Retiming of digital circuits is
conventionally based on the estimates of propagation
delays across different paths in the data-flow graphs
(DFGs) obtained by discrete component timing model,
which implicitly assumes that operation of a node can
begin only after the completion of the operation(s) of its
preceding node(s) to obey the data dependence
requirement. Such a discrete component timing model very
often gives much higher estimates of the propagation
delays than the actuals particularly when the computations
in the DFG nodes correspond to fixed-point arithmetic
operations like additions and multiplications. On the other
hand, very often it is imperative to deal with the DFGs of
such higher granularity at the architecture-level abstraction
of digital system design for mapping an algorithm to the

desired architecture, where the overestimation of
propagation delay leads to unwanted pipelining and
undesirable increase in pipeline overheads. In this research
work, propose the connected component timing model to
obtain adequately precise estimates of propagation delays
across different combinational paths in a DFG easily, for
efficient cutset-retiming in order to reduce the

critical path substantially without significant increase in
register-complexity and latency. Apart from that, propose
novel node-splitting and node-merging techniques that can
be used in combination with the existing retiming methods
to achieve reduction of critical path to a fraction that of the
original DFG with a small increase in overall register
complexity.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
ISSUE: 58, VOLUME 38, NUMBER 01, FEBRUARY 2018

 61

H. Kim, Y. Lee and J. H. Kim, [2] A low-complexity
distributed cyclic redundancy check (CRC) architecture for
the CRC-aided early stopping unit is proposed. In the
previous distributed CRC unit, the general high-order
Galois field (GF) multiplier occupies almost the area of the
CRC unit and requires high-hardware cost and long critical
path-delay. Accordingly, a computation algorithm based
on GF arithmetic is analysed and an optimal CRC unit
with the small order of the GF multiplier and newly
designed linear feedback shift register is proposed. The
proposed CRC architecture is implemented in 65 nm
CMOS process for radix-22 and radix-24 parallel turbo
decoders based on LTE-Advanced. In the radix-22 system,
reductions of about 57.1% of gate count, 31.7% of critical
path-delay and 44.1% of power consumption are achieved
compared with the previous work.

X. Lou, Y. J. Yu and P. K. Meher, [3] In this research
work, critical path of multiple constant multiplication
(MCM) block is analyzed precisely and optimized for
high-speed and low-complexity implementation. A delay
model based on signal propagation path is proposed for
more precise estimation of critical path delay of MCM
blocks than the conventional adder depth and the number
of cascaded full adders. A dual objective configuration
optimization (DOCO) algorithm is developed to optimize
the shift-add network configuration to derive high-speed
and low-complexity implementation of the MCM block for
a given fundamental set along with a corresponding
additional fundamental set. A genetic algorithm (GA)-
based technique is further proposed to search for optimum
additional fundamentals. In the evolution process of GA,
the DOCO is applied to each searched additional
fundamental set to optimize the configuration of the
corresponding shift-add network. Experimental results
show that the proposed GA-based technique reduces the
critical path delay, area, power consumption, area delay
product and power delay product by 32.8%, 4.2%, 5.8%,
38.3%, and 41.0%, respectively, over other existing
optimization methods.

P. K. Meher and S. Y. Park,[4] This research work
presents a precise analysis of the critical path of the least-
mean-square (LMS) adaptive filter for deriving its
architectures for high-speed and low-complexity
implementation. It is shown that the direct-form LMS
adaptive filter has nearly the same critical path as its
transpose-form counterpart, but provides much faster
convergence and lower register complexity. From the
critical-path evaluation, it is further shown that no
pipelining is required for implementing a direct-form LMS
adaptive filter for most practical cases, and can be realized
with a very small adaptation delay in cases where a very
high sampling rate is required. Based on these findings,

this research work proposes three structures of the LMS
adaptive filter: (i) Design 1 having no adaptation delays,
(ii) Design 2 with only one adaptation delay, and (iii)
Design 3 with two adaptation delays. Design 1 involves
the minimum area and the minimum energy per sample
(EPS). The best of existing direct-form structures requires
80.4% more area and 41.9% more EPS compared to
Design 1. Designs 2 and 3 involve slightly more EPS than
the Design 1 but offer nearly twice and thrice the MUF at a
cost of 55.0% and 60.6% more area, respectively.

X. Y. Zhu, T. Basten, M. Geilen and S. Stuijk,[5] Multirate
digital signal processing (DSP) algorithms are often
modeled with synchronous dataflow graphs (SDFGs). A
lower iteration period implies a faster execution of a DSP
algorithm. Retiming is a simple but efficient graph
transformation technique for performance optimization,
which can decrease the iteration period without affecting
functionality. In this research work, deal with two
problems: feasible retiming-retiming a SDFG to meet a
given iteration period constraint, and optimal retiming-
retiming a SDFG to achieve the smallest iteration period.
present a novel algorithm for feasible retiming and based
on that one, a new algorithm for optimal retiming, and
prove their correctness. Both methods work directly on
SDFGs, without explicitly converting them to their
equivalent homogeneous SDFGs. Experimental results
show that our methods give a significant improvement
compared to the earlier methods.

X. Y. Zhu, M. Geilen, T. Basten and S. Stuijk,[6] This
research work presents an exact method and a heuristic
method for static rate-optimal multiprocessor scheduling
of real-time multi rate DSP algorithms represented by
synchronous data flow graphs (SDFGs). Through
exploring the state-space generated by a self-timed
execution (STE) of an SDFG, a static rate-optimal
schedule via explicit retiming and implicit unfolding can
be found by our exact method. By constraining the number
of concurrent firings of actors of an STE, the number of
processors used in a schedule can be limited. Using this,
present a heuristic method for processor-constrained rate-
optimal scheduling of SDFGs. Both methods do not
explicitly convert an SDFG to its equivalent homogenous
SDFG. Our experimental results show that the exact
method gives a significant improvement compared to the
existing methods, our heuristic method further reduces the
number of processors used.

Y. Diao and Y. Wu,[7] Traditional retiming processes are
mostly MILP based with the physical interconnect
information less correctly reflected, thus could be very
CPU intensive and incorrect on the final clock period
estimations. Moreover, the number of flip-flops tends to be
undesirably increased after the retiming process, which can

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
ISSUE: 58, VOLUME 38, NUMBER 01, FEBRUARY 2018

 62

cause a significant area/power penalty on the retimed
circuit. To overcome these major drawbacks of the
conventional retiming technique, first propose a fast
retiming algorithm which avoids solving MILP, and with
both gate and interconnect delay formulated together. For a
more accurate delay estimation, all interconnect delays are
formulated and calculated based on real placements.
Additionally, integrate it with a specific rewiring algorithm
to cut down the number of flip-flops (FFs) without
sacrificing retimed clock periods. Experimental results
show that our pure retiming algorithm can achieve an
average of 5.75% optimization on the clock period in a
very fast speed. With a rewiring algorithm targeting for FF
reduction applied, a FF reduction of up to 31.2% (11.3%
on average) can be obtained without the compromise on
the retimed clock period compared to the pure retimed
results.

IV. PROBLEM STATEMENT

Optimal decision making has many practical advantages
such as allowing for a systematic design of the decision
maker or improving the quality of the decisions taken in
the presence of constraints. However, the need to solve an
optimization problem at every decision instant, typically
via numerical iterative algorithms, imposes a very large
computational demand on the device implementing the
decision maker. Consequently, so far, optimization-based
decision making has only been widely adopted in
situations that require making decisions only once during
the design phase of a system, or in systems that, while
requiring repeated decisions, can afford long computing
times or powerful machines.

Implementation of repeated optimal decisions on systems
with resource constraints remains challenging. Resource
constraints can refer to:

1) Time - the time allowed for computing the
solution of the optimization problem is strictly
limited,

2) The computational platform - the power
consumption, cost, size, memory available, or the
computational power are restricted

V. CONCLUSION

This work presents an extensive survey on efficient
retiming of fixed-point circuits. There are various retiming
algorithms have been proposed for efficient retiming and
significant amount of research has been done on retiming.
An introduction to retiming and its application merits and
demerits have been presented in this work. Also a brief
survey of literature has been done. Based on the literature
survey problem has been formulated for existing retiming

algorithms and recent approaches. The major approaches
in retiming circuits are Edge-triggered Circuits, Timing
Models, Level-Clocked Circuits, Retiming with Equivalent
Initial States. Retiming can alter the amount of switching
that takes place in a circuit, and can, therefore, affect the
power consumption of a circuit and can be used both to
improve testability of a circuit, and as an aid to automatic
test generation. Retiming relocates the memory elements
in a circuit without changing its behavior.

REFERENCES

[1] P. K. Meher, "On Efficient Retiming of Fixed-Point
Circuits," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 4, pp. 1257-1265,
April 2016.

[2] H. Kim, Y. Lee and J. H. Kim, "Low-complexity CRC-aided
early stopping unit for parallel turbo decoder," in Electronics
Letters, vol. 51, no. 21, pp. 1660-1662, 10 8 2015.

[3] X. Lou, Y. J. Yu and P. K. Meher, "Fine-Grained Critical
Path Analysis and Optimization for Area-Time Efficient
Realization of Multiple Constant Multiplications," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol.
62, no. 3, pp. 863-872, March 2015.

[4] P. K. Meher and S. Y. Park, “Critical-path analysis and low-
complexity implementation of the LMS adaptive algorithm,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 3, pp.
778-788, Mar. 2014.

[5] X. Y. Zhu, T. Basten, M. Geilen and S. Stuijk, "Efficient
Retiming of Multirate DSP Algorithms," in IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 6, pp. 831-844, June 2012.

[6] X. Y. Zhu, M. Geilen, T. Basten and S. Stuijk, "Static Rate-
Optimal Scheduling of Multirate DSP Algorithms via
Retiming and Unfolding," 2012 IEEE 18th Real Time and
Embedded Technology and Applications Symposium,
Beijing, 2012, pp. 109-118.

[7] Y. Diao and Y. Wu, "A Fast Retiming Algorithm Integrated
with Rewiring for Flip-Flop Reductions," 2011 12th
International Conference on Computer-Aided Design and
Computer Graphics, Jinan, 2011, pp. 471-477.

[8] M.R.C.M. Berkelaar. LP.SOLVE User’s Manual. Eindhoven
University of Technology, Eindhoven, The Netherlands,
1992.

[9] F. Brglez, D.Bryan, and K. Kozminski. Combinational
profiles of sequential benchmark circuits. In Proceedings of
the IEEE International Symposium on Circuits and Systems,
pages 1929-1934, 1989.

[10] T. M. Burks and K. A. Sakallah. Optimization of critical
paths in circuits with level-sensitive latches. In Proceedings
of the IEEE/ACM International Conference on Computer-
Aided Design, pages 468-473, 1994.

[11] T. M. Burks, K. A. Sakallah, and T. N. Mudge. Critical
paths in circuits with level- sensitive latches. IEEE
Transactions on VLSI Systems, 3(2):273—291, June 1995.

