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Abstract-  The rapid growth of semiconductor technology has 
fuelled large scale VLSI  innovation in the electronic product 
design domain. The electronic gadgets available in the market 
today are not only useful in their own right but there is intense 
competition between various industries for making them 
efficient, multi-functional and less expensive. In order to keep 
up with the increasing competition, the product design 
engineers find themselves in a perpetual cycle of design and 
product delivery. With every iteration of the cycle, the designers 
need to work with increased technological complexity while aim 
to deliver more value for every unit cost that charge from the 
consumer. The present research addresses the problem of 
assigning optimal fixed-point number formats to operations for 
the implementation of a given signal processing system, graphic 
processing system etc. keeping in mind both correct 
functionality and being able to meet the desired performance 
parameters. 

Keywords- Cutset retiming, digital signal processing (DSP) 
hardware, fixed-point arithmetic, retiming, GPU, FFT. 

I. INTRODUCTION 

With the advances in integrated circuit (IC) technology, 
more than 10 million devices can be manufactured on a 
single chip today. Because of this increase in the 
complexity, Very Large Scale Integration (VLSI) circuit 
designs require sophisticated Electronic Design 
Automation (EDA) tools capable of handling large 
circuits. Due to the increase in complexity and reduced 
time to market, designers cannot rely on their intuition to 
design fast, low power sequential circuits with minimum 
area. Thus circuit optimization tools are indispensable for 
designers, and much work needs to be done to develop 
good computer-aided design (CAD) tools. Most of the 
traditional circuit optimization techniques operate on 
combinational sub-circuits extracted from sequential 
designs. Thus to limited capabilities for optimization and 
true sequential optimization techniques are needed. This 
work develops CAD tools for optimizing large sequential 
circuits. 

Retiming is a powerful transformation that has great 
potential for sequential circuit optimization. It is the 
concept of moving storage devices across computation 

nodes to improve performance without changing the input-
output behavior, and can operate at gate level netlists or 
higher abstractions (e.g. data flow graphs, communication 
graphs, processor schedules). 

At the circuit level these storage devices are called 
registers which can be either edge- triggered flip-flops (or 
FF’s) or level sensitive latches (or latches), and the 
computation nodes are combinational gates. Retiming 
moves registers across gates without changing the number 
of registers in any cycle or on any path from the primary 
inputs to the primary outputs. This preserves the input-
output latency of the circuit. Since retiming does not 
directly affect the combinational part of the circuit the 
circuit behavior remains unchanged. However since 
retiming can change the boundaries of combinational 
logic, it has the potential to affect the results of 
combinational synthesis as well.  

Retiming can be performed to improve the circuit behavior 
with respect to different objective functions. Some of these 
objective functions are discussed below. 

A. Clock Period  

The simplest objective function used in retiming is 
minimization of the clock period. Since the clock period in 
an edge-triggered circuit is given by the maximum 
combinational delay, registers can be relocated to reduce 
the clock period.  

 

Figure 1.1 retiming effects on clock period. 
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For the circuit shown in Figure 1.1 (a), with unit delay 
gates, the clock period is 3.0 time units. If relocate register 
LI from the output of gate G3 to its input, get the circuit in 
Figure 1.1 (b). with a clock period of 2.0 units. Thus 
relocating registers can reduce the clock period of a circuit, 
and retiming can be used to minimize the clock period. 

Retiming to minimize the clock period is termed 
minperiod retiming. Notice that the input-output behavior 
is not changed by retiming since in both cases the output is 
produced after 2 clock cycles. Retiming a circuit to 
achieve a given target clock period is a special case of this 
problem. 

B. Area  

Since retiming does not affect the combinational part of 
the circuit, the area overhead of the combinational part 
remains constant. Retiming can. However, affect the 
overall area of the circuit since it can alter the number of 
registers in the circuit. 

Two circuits can have the same input-output behavior and 
clock period, but require different number of registers. To 
illustrate this consider the circuits in Figure 1.2 which are 
equivalent under the retiming transformation. The circuit 
in Figure 1.2 (a) requires two registers while that in Figure 
1.2 (b) requires only one register. 

 

Figure 1.2 Effect of retiming on number of registers. 

Retiming can therefore be used to minimize the number of 
registers in the circuit. This can be done without any 
constraint on the clock period of the resulting circuit, or 
subject to a target clock period. The former is called 
unconstrained min area retiming while the latter is called 
constrained min area retiming or simply min area retiming. 

C. Power  

The power dissipated in a circuit depends on the product of 
switching activity and the load capacitance at the output of 
a gate, summed over all gates. Since registers can filter out 
glitches, relocation of registers will affect the switching 
activity at gate outputs. In addition relocating registers also 
changes the load capacitance seen by gates. Thus retiming 
can change the power requirements of a circuit, and can be 
used for reducing the power dissipation in sequential 

circuits by placing registers on interconnections with high 
switching activity and high capacitive loads. 

II. RETIMING DATA FLOW  GRAPHS  

In data-flow-graph representations, the nodes represent 
computations (functions or subtasks) and the directed 
edges represent data paths (communication between 
nodes). 

Retiming changes the location of registers (delay elements) 
in a circuit in an attempt to balance the logic depth 
between sequential elements and minimize the critical 
path. A valid retiming solution must not change the 
input/output functionality of the DFG. 

Retiming is mainly used to reduce the critical path in 
synchronous circuits. The critical path of the filter in Fig.  
2.1(a) (shown by the dashed line)   passes through one 
multiplier and one adder and has a computation time of 3 
u.t. The retimed filter in Fig. 2.1(b) has a critical path that 
passes through two adders and has a computation time of 2 
u.t. 

 

Figure 2.1 (a) Original DFG (b) Retimed DFG. 

A. Mathematical Model for Retiming 

Retiming maps a data-flow-graph G to a retimed graph Gr. 
A retimed solution is characterized by a value r(U ) known 
as the retiming weight for each node U in the graph. Let 
𝜔𝜔(𝑒𝑒) denote the weight of the edge e in the original graph 
G, and let 𝜔𝜔𝑟𝑟(𝑒𝑒) denote the weight of the edge e in the 
retimed graph Gr. The weight of the edge e : U → V in the 
retimed graph is computed from the weight of the edge in 
the original graph using 

𝜔𝜔𝑟𝑟(𝑒𝑒) = 𝜔𝜔(𝑒𝑒) + 𝑟𝑟(𝑉𝑉) − 𝑟𝑟(𝑈𝑈) 𝑟𝑟(𝑉𝑉), 𝑟𝑟(𝑈𝑈) … … … … . (1) 

Where Z is the set of Integers. 

The retiming values  r(1) = 0,  r(2) = 1,  r(3) = 0 and r(4) = 
0 translates   the DFG in Fig. 2.1(a) to the retimed DFG in 
Fig. 2.1(b). Retiming does not alter the architecture of the 
design, hence the incidence and loop matrices for the 
design remain for the original and retimed DFG. However, 
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the weights on the edges change and it is the weight vector 
which is transformed during retiming. 

A retiming solution is feasible if 𝜔𝜔𝑟𝑟(𝑒𝑒)  ≥  0 holds for all 
edges. It can be proved that retiming does not alter the 

total number of delays in a loop of  the DFG . This would 
mean that for a given loop in the DFG the sum of delays 
on the edges of the loop will remain unchanged after 
retiming.  

III. LITERATURE REVIEW 

SR. 
NO. TITLE AUTHOR YEAR METHODOLODY 

1 
On Efficient Retiming of Fixed-
Point Circuits, 

P. K. Meher, 2016 

Connected component timing model to 
obtain adequately precise estimates of 
propagation delays across different 
combinational paths in a DFG easily 

2 
Low-complexity CRC-aided early 
stopping unit for parallel turbo 
decoder, 

H. Kim, Y. 
Lee and J. H. 

Kim, 
2015 

CRC architecture is implemented in 65 nm 
CMOS process for radix-22 and radix-24 
parallel turbo decoders based on LTE-
Advanced. 

3 

Fine-Grained Critical Path 
Analysis and Optimization for 
Area-Time Efficient Realization 
of Multiple Constant 
Multiplications, 

X. Lou, Y. J. 
Yu and P. K. 

Meher, 
2015 

The DOCO is applied to each searched 
additional fundamental set to optimize the 
configuration of the corresponding shift-
add network. 

4 
Critical-Path Analysis and Low-
Complexity Implementation of 
the LMS Adaptive Algorithm, 

P. K. Meher 
and S. Y. Park, 

2014 

The critical path of the least-mean-square 
(LMS) adaptive filter for deriving its 
architectures for high-speed and low-
complexity implementation 

5 
Efficient Retiming of Multirate 
DSP Algorithms, 

X. Y. Zhu, T. 
Basten, M. 

Geilen and S. 
Stuijk, 

2012 
A lower iteration period implies a faster 
execution of a DSP algorithm with 
synchronous dataflow graphs (SDFGs) 

6 
Static Rate-Optimal Scheduling 
of Multirate DSP Algorithms via 
Retiming and Unfolding 

X. Y. Zhu, M. 
Geilen, T. 

Basten and S. 
Stuijk, 

2012 
An exact method and a heuristic method for 
static rate-optimal multiprocessor 
scheduling of real-time multi rate DSP 

7 
A Fast Retiming Algorithm 
Integrated with Rewiring for Flip-
Flop Reductions, 

Y. Diao and Y. 
Wu, 2011 

A fast retiming algorithm which avoids 
solving MILP, and with both gate and 
interconnect delay formulated together. 

 

P. K. Meher,[1] Retiming of digital circuits is 
conventionally based on the estimates of propagation 
delays across different paths in the data-flow graphs 
(DFGs) obtained by discrete component timing model, 
which implicitly assumes that operation of a node can 
begin only after the completion of the operation(s) of its 
preceding node(s) to obey the data dependence 
requirement. Such a discrete component timing model very 
often gives much higher estimates of the propagation 
delays than the actuals particularly when the computations 
in the DFG nodes correspond to fixed-point arithmetic 
operations like additions and multiplications. On the other 
hand, very often it is imperative to deal with the DFGs of 
such higher granularity at the architecture-level abstraction 
of digital system design for mapping an algorithm to the 

desired architecture, where the overestimation of 
propagation delay leads to unwanted pipelining and 
undesirable increase in pipeline overheads. In this research 
work, propose the connected component timing model to 
obtain adequately precise estimates of propagation delays 
across different combinational paths in a DFG easily, for 
efficient cutset-retiming in order to reduce the  

 

critical path substantially without significant increase in 
register-complexity and latency. Apart from that, propose 
novel node-splitting and node-merging techniques that can 
be used in combination with the existing retiming methods 
to achieve reduction of critical path to a fraction that of the 
original DFG with a small increase in overall register 
complexity. 
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H. Kim, Y. Lee and J. H. Kim, [2] A low-complexity 
distributed cyclic redundancy check (CRC) architecture for 
the CRC-aided early stopping unit is proposed. In the 
previous distributed CRC unit, the general high-order 
Galois field (GF) multiplier occupies almost the area of the 
CRC unit and requires high-hardware cost and long critical 
path-delay. Accordingly, a computation algorithm based 
on GF arithmetic is analysed and an optimal CRC unit 
with the small order of the GF multiplier and newly 
designed linear feedback shift register is proposed. The 
proposed CRC architecture is implemented in 65 nm 
CMOS process for radix-22 and radix-24 parallel turbo 
decoders based on LTE-Advanced. In the radix-22 system, 
reductions of about 57.1% of gate count, 31.7% of critical 
path-delay and 44.1% of power consumption are achieved 
compared with the previous work. 

X. Lou, Y. J. Yu and P. K. Meher, [3] In this research 
work, critical path of multiple constant multiplication 
(MCM) block is analyzed precisely and optimized for 
high-speed and low-complexity implementation. A delay 
model based on signal propagation path is proposed for 
more precise estimation of critical path delay of MCM 
blocks than the conventional adder depth and the number 
of cascaded full adders. A dual objective configuration 
optimization (DOCO) algorithm is developed to optimize 
the shift-add network configuration to derive high-speed 
and low-complexity implementation of the MCM block for 
a given fundamental set along with a corresponding 
additional fundamental set. A genetic algorithm (GA)-
based technique is further proposed to search for optimum 
additional fundamentals. In the evolution process of GA, 
the DOCO is applied to each searched additional 
fundamental set to optimize the configuration of the 
corresponding shift-add network. Experimental results 
show that the proposed GA-based technique reduces the 
critical path delay, area, power consumption, area delay 
product and power delay product by 32.8%, 4.2%, 5.8%, 
38.3%, and 41.0%, respectively, over other existing 
optimization methods. 

P. K. Meher and S. Y. Park,[4] This research work 
presents a precise analysis of the critical path of the least-
mean-square (LMS) adaptive filter for deriving its 
architectures for high-speed and low-complexity 
implementation. It is shown that the direct-form LMS 
adaptive filter has nearly the same critical path as its 
transpose-form counterpart, but provides much faster 
convergence and lower register complexity. From the 
critical-path evaluation, it is further shown that no 
pipelining is required for implementing a direct-form LMS 
adaptive filter for most practical cases, and can be realized 
with a very small adaptation delay in cases where a very 
high sampling rate is required. Based on these findings, 

this research work proposes three structures of the LMS 
adaptive filter: (i) Design 1 having no adaptation delays, 
(ii) Design 2 with only one adaptation delay, and (iii) 
Design 3 with two adaptation delays. Design 1 involves 
the minimum area and the minimum energy per sample 
(EPS). The best of existing direct-form structures requires 
80.4% more area and 41.9% more EPS compared to 
Design 1. Designs 2 and 3 involve slightly more EPS than 
the Design 1 but offer nearly twice and thrice the MUF at a 
cost of 55.0% and 60.6% more area, respectively. 

X. Y. Zhu, T. Basten, M. Geilen and S. Stuijk,[5] Multirate 
digital signal processing (DSP) algorithms are often 
modeled with synchronous dataflow graphs (SDFGs). A 
lower iteration period implies a faster execution of a DSP 
algorithm. Retiming is a simple but efficient graph 
transformation technique for performance optimization, 
which can decrease the iteration period without affecting 
functionality. In this research work, deal with two 
problems: feasible retiming-retiming a SDFG to meet a 
given iteration period constraint, and optimal retiming-
retiming a SDFG to achieve the smallest iteration period. 
present a novel algorithm for feasible retiming and based 
on that one, a new algorithm for optimal retiming, and 
prove their correctness. Both methods work directly on 
SDFGs, without explicitly converting them to their 
equivalent homogeneous SDFGs. Experimental results 
show that our methods give a significant improvement 
compared to the earlier methods. 

X. Y. Zhu, M. Geilen, T. Basten and S. Stuijk,[6] This 
research work presents an exact method and a heuristic 
method for static rate-optimal multiprocessor scheduling 
of real-time multi rate DSP algorithms represented by 
synchronous data flow graphs (SDFGs). Through 
exploring the state-space generated by a self-timed 
execution (STE) of an SDFG, a static rate-optimal 
schedule via explicit retiming and implicit unfolding can 
be found by our exact method. By constraining the number 
of concurrent firings of actors of an STE, the number of 
processors used in a schedule can be limited. Using this, 
present a heuristic method for processor-constrained rate-
optimal scheduling of SDFGs. Both methods do not 
explicitly convert an SDFG to its equivalent homogenous 
SDFG. Our experimental results show that the exact 
method gives a significant improvement compared to the 
existing methods, our heuristic method further reduces the 
number of processors used. 

Y. Diao and Y. Wu,[7] Traditional retiming processes are 
mostly MILP based with the physical interconnect 
information less correctly reflected, thus could be very 
CPU intensive and incorrect on the final clock period 
estimations. Moreover, the number of flip-flops tends to be 
undesirably increased after the retiming process, which can 
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cause a significant area/power penalty on the retimed 
circuit. To overcome these major drawbacks of the 
conventional retiming technique, first propose a fast 
retiming algorithm which avoids solving MILP, and with 
both gate and interconnect delay formulated together. For a 
more accurate delay estimation, all interconnect delays are 
formulated and calculated based on real placements. 
Additionally, integrate it with a specific rewiring algorithm 
to cut down the number of flip-flops (FFs) without 
sacrificing retimed clock periods. Experimental results 
show that our pure retiming algorithm can achieve an 
average of 5.75% optimization on the clock period in a 
very fast speed. With a rewiring algorithm targeting for FF 
reduction applied, a FF reduction of up to 31.2% (11.3% 
on average) can be obtained without the compromise on 
the retimed clock period compared to the pure retimed 
results. 

IV. PROBLEM STATEMENT 

Optimal decision making has many practical advantages 
such as allowing for a systematic design of the decision 
maker or improving the quality of the decisions taken in 
the presence of constraints. However, the need to solve an 
optimization problem at every decision instant, typically 
via numerical iterative algorithms, imposes a very large 
computational demand on the device implementing the 
decision maker. Consequently, so far, optimization-based 
decision making has only been widely adopted in 
situations that require making decisions only once during 
the design phase of a system, or in systems that, while 
requiring repeated decisions, can afford long computing 
times or powerful machines. 

Implementation of repeated optimal decisions on systems 
with resource constraints remains challenging. Resource 
constraints can refer to: 

1) Time - the time allowed for computing the 
solution of the optimization problem is strictly 
limited, 

2) The computational platform - the power 
consumption, cost, size, memory available, or the 
computational power are restricted 
 

V. CONCLUSION 

This work presents an extensive survey on efficient 
retiming of fixed-point circuits. There are various retiming 
algorithms have been proposed for efficient retiming and 
significant amount of research has been done on retiming. 
An introduction to retiming and its application merits and 
demerits have been presented in this work. Also a brief 
survey of literature has been done. Based on the literature 
survey problem has been formulated for existing retiming 

algorithms and recent approaches. The major approaches 
in retiming circuits are Edge-triggered Circuits, Timing 
Models, Level-Clocked Circuits, Retiming with Equivalent 
Initial States. Retiming can alter the amount of switching 
that takes place in a circuit, and can, therefore, affect the 
power consumption of a circuit and can be used both to 
improve testability of a circuit, and as an aid to automatic 
test generation. Retiming relocates the memory elements 
in a circuit without changing its behavior. 
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