
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 46, VOLUME 28, NUMBER 02, 2017

 86

Study of Compiler Construction
Adilshah N. Jalgeri.

1
, Balkrushna B. Jagadale.

2
, Rajendra S. Navale.

3

Assistant Professors at Fabtech Technical Campus, College of Engineering and Research, Sangola

Abstract - Compiler construction is a commonly used software

engineering implementation and this paper grants a compiler

structure for adaptive computing. The outcome of this paper is

to provide a concept of compiler design and its tools to

implement an enhanced technique for compilation we have to

know the characteristics of the program. This paper provides us

implementation of compiler.

Keywords - Compiler, Phases of Compiler, Tools.

1. INTRODUCTION

Programming languages describes the interface between

people and machines, all the software running on the

computers are written in certain programming language.

But, before a program can be run, it first must be translated

into a form in which it can be executed by computer.The

software systems that do this translation are called

compilers.This paper is designed for understanding the

basics of compiler Construction.

A Compiler is a program that reads a program written in

one Language (source Language) and converts it in an

equivalent program in another language (target language).

Main part of the compiler is to report any errors in the

source program that it detects during the translation

process.

2. COMPILER CONSTRUCTION

A compiler is a nontrivial task so it’s better to structure the

work in proper manner. To do so the compiler is divided

into several phases with well-designed edges abstractly,

these phases work in order each phase (except the first)

taking the output from the previous phase as its input.

Fig1:-Phases of Compiler

A common division into phases is described below

2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or

scanning. The lexical analyzer reads the stream of

characters making up the source program and groups the

characters into meaningful sequences called lexemes. For

each lexeme, the lexical analyzer produces as output a

token of the form

2.2 Syntax Analysis

The second phase of the compiler is syntax analysis or

parsing. The parser uses the first components of the tokens

produced by the lexical analyzer to create a tree like

intermediate representation that shows the grammatical

structure of the token stream. A typical representation is a

syntax tree in which each interior node represents an

operation and the children of the node represent the

arguments of the operation.

2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the

information in the symbol table to check the source

program for semantic consistency with the language

definition. It also gathers type information and saves it in

either the syntax tree or the symbol table, for subsequent

use during intermediate code generation. An important part

of semantic analysis is type checking, where the compiler

checks that each operator has matching operands

2.4 Intermediate Code Generation

In the process of translating a source program into target

code, a compiler may construct one or more intermediate

representations, which can have a variety of forms. Syntax

trees are a form of intermediate representation they are

commonly used during syntax and semantic analysis. After

syntax and semantic analysis of the source program, many

compilers generate an explicit low level or machine like

intermediate representation, which we can think of as a

program for an abstract machine. This intermediate

representation should have two important properties it

should be easy to produce and it should be easy to translate

into the target machine.

2.5 Code Optimization

The machine independent code optimization phase tries to

improve the intermediate code so that better target code

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 46, VOLUME 28, NUMBER 02, 2017

 87

will result. Usually better means faster, but other

objectives may be desired, such as shorter code, or target

code that consumes less power. Code optimization is a

reasonable way to generate good target code.

2.6 Code Generation

The code generator takes as input an intermediate

representation of the source program and maps it into the

target language. If the target language is machine code,

registers or memory locations are selected for each of the

variables used by the program. Then the intermediate

instructions are translated into sequences of machine

instructions that perform the same task.

2.7 Symbol Table Management

An essential function of a compiler is to record the variable

names used in the source program and collect information

about various attributes of each name. And these attributes

are handled by symbol table.

Here attributes may provide information about the storage

allocated for a name, its type, its scope (where in the

program its value may be used) and in the case of

procedure names, such things as the number and types of

its arguments, the method of passing each argument (for

example by value or by reference) and the type returned.

2.8 Error Handler

Compiler can detect various types of errors such as

1. Lexical errors:-It consist of Misspelling, missing quotes

around string texts

2. Syntactic errors: - It consists of Misplaced semicolons,

extra or missing braces, Missing matching keywords.

3. Static semantic errors: - It consists of type mismatches,

return values for void return method.

4. Logical errors: - Logical error may be = vs. ==

And these types of errors are recovered by following

methods

1. Panic mode recovery

This method removes input symbols one at a time till one

of a designated set of matching tokens is found.

2. Phrase level recovery

This method replaces a prefix of the remaining input by

some string that allows the parser to continue.

3. Global correction

Here a minimal sequence of changes to obtain a globally

least cost correction.

4. Error productions

Here addition of the error productions in the grammar is

done.

3. COMPILER CONSTRUCTION TOOLS

Expert tools have been made to help implement various

phases of a compiler. These tools use specialized

languages for specifying and implementing specific

components, and many use quite sophisticated algorithms.

Some commonly used compiler construction tools include

3.1. Parser generators that automatically create syntax

analyzers from a grammatical report of a programming

language.

3.2. Scanner generators that produce lexical analyzers

from a regular expression depiction of the tokens of a

language.

3.3. Syntax directed translation engines that produce

collections of sequences for walking a parse tree and

generating intermediate code.

3.4. Code generator that produce a code generator from a

group of rules for converting each operation of the

intermediate language into the machine language for a

target machine.

3.5. Data flow analysis engines that ease the gathering of

information about how values are transferred from one part

of a program to each other part. Data flow analysis is a key

part of code optimization.

3.6. Compiler construction toolkits that offer a combined

set of sequences for constructing various phases of a

compiler.

4. APPLICATIONS OF COMPILER TECHNOLOGY

In addition to the development of a compiler design,

compiler is not only about compilers, many people use the

technology learned by studying compilers in institutions.

Techniques used in compiler design can be applicable to

many problems in computer science such as

1. Lexical analyzer can be used in text editors, information

retrieval and pattern recognition.

2. Parser can be used in query processing system such as

SQL.

3. Many of the software’s have complex front end for that

the solution is techniques used in compiler design.

6. CONCLUSION

This paper outlines basics of the compiler construction and

compiler tools. Here we described various phases of

compiler which are used to construct a well-designed

compiler we have also studied various applications of

compiler.

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946

ISSUE: 46, VOLUME 28, NUMBER 02, 2017

 88

7. FUTURE SCOPES

In further research we will study actual implementation of

each phases used in compiler through programing language

and some more advanced concepts in compiler.

REFERENCES

[1] Mahak Jain, Nidhi Sehrawat, Neha Munsi ,

“COMPILER BASIC DESIGN AND

CONSTRUCTION”, International Journal of

Computer Science and Mobile Computing, Vol.3

Issue.10, October- 2014. Name of Auhtors, “Title of the research”, Citation Details, year. (Times New Roman, Normal, 9pt)Name of Auhtors, “Title of the research”, Citation Details, year. (Times New Roman, Normal, 9pt)Name of Auhtors, “Title of the research”, Citation Details, year.

[2] Aastha Singh, Sonam Sinha, Archana Priyadarshi,

“Compiler Construction” International Journal of

Scientific and Research Publications, Volume 3, Issue

4, April 2013.

[3] Jatin Chhabra, Hiteshi Chopra, Abhimanyu Vats,

“Research paper on Compiler Design”, 2014 IJIRT,

Volume 1 Issue 5.

[4] Alfred V. Aho, Alfred V. Aho, Ravi Sethi, “Compilers

Principles, Techniques, & Tools” Second Edition.

AUTHOR'S PROFILE

Adilshah N.Jalgeri. has received his

Bachelor of Engineering degree in

Computer Science and Engineering

from V.V.P Institute of Engineering

and Technology, Sholapur in the year

2013. And received M.Tech. degree with the specialization

of Computer Network Engineering in S.I.E.T.Bijapur in

the year 2015.His area of interest Computer Networks,

System programming, Compiler Construction.

 Balkrushna B. Jagadale. has received

his Bachelor of Engineering degree in

Computer Science and Engineering

from BKEC, Bidar in the year 2013.And

received M.Tech degree with the

specialization of Computer Science and Engineering in

P.D.A College of Engineering Kalburgi in the year 2015.

His area of interest C, C++, Java.

Rajendra S.Navale has received his

Bachelor of Engineering degree in

Computer Engineering from

S.C.O.E ,Pune in the year 2010.And

received M.E degree with the

specialization of Computer Networks in S.K.N College of

Engineering Pune in the year 2013 His area of interest

Computer Network, C#, Information and Cyber Security.

