,.";:I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (UJITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

Grid Load Balancing with Schedule Based
Backfilling Policy using Gap Search Optimization

Madhuvan Dixit*, Pushpendra Singh Yadav®

Assistant Professor', PG Scholar?, Department of CSE, MIT, Bhopal

Abstract - Grid computing, one of the most trendy phrase used
in IT, is emerging vastly distributed computational paradigm. A
computational grid provides a collaborative environment of the
hefty number of resources capable to do high computing
performance to reach the common goal. Grid computing can be
called as super virtual computer, it ensemble large scale
geographically distributed heterogeneous resources. Resource
allocation is a key element in the grid computing and grid
resource may leave at anytime from grid environment. Despite
a number of benefits in grid computing, still resource
allocation is a challenging task in the grid. This work
investigates t0 maximize the profits by analyzing how the tasks
are allocated to grid resources effectively according to quality
of service parameter and gratifying user requisition. A method
of schedule based backfilling load balancing with gap search
algorithm has introduced t0 answer the above raised question
about the resource allocation problem based on grid user
requisition. The swift uses genetic algorithms heuristic
functions and makes an effective resource allocation process in
grid environment. The results of proposed technique of
SBBFP-GS algorithm ameliorate the grid resource allocation.

Keywords - Grid Computing, Heterogeneous Resource,
Schedule Based Backfilling Load Balancing, Gap Search,
Grid.

I INTRODUCTION

Grids are distributed computational systems that allow
users to access resources owned by different
organizations. Grid scheduling, that is, the allocation of
distributed computational resources to user applications, is
one of the most challenging and complex task in Grid
computing. Nowadays, several are the real-life
applications in which Grids are involved; some practical
fields are protein folding, weather modeling, and satellite
image processing. In grid architecture, users submit
requests for task execution from any one of a number of
sites. At each site, besides the local computing system, the
system model is composed by three components: an
External Scheduler (ES), responsible for determining a
particular site where a submitted task can be executed; a
Local Scheduler (LS), responsible for determining the
order in which tasks are executed at that particular site; a
Dataset Scheduler (DS), responsible for determining if and
when to replicate data and/or delete local files. Resource
site contains, in general, heterogencous computing
resources interconnect by vendor independent networks. In
general, on receipt of a task request, the ES interrogates

the LSs to ascertain whether the task can be executed on
the available resources and meet the user specified due
date. If this is the case, specific site in which executing
that task is chosen. Otherwise, the ES attempts to locate
LS of a site, controlled by another ES that can meet the
task processing requirements, through search mechanisms.
If a LS cannot be located within a preset number of search
steps, the task request is either rejected or passed to
another LS that can minimize the due date failure
depending on a task request parameter. When a suitable
site is located, the task request is passed from the ES to
this site and is managed by the associated LS.

In Following Chapter 2 gives literature reviews of the
different method of load balancing, this entire scheme
entitled with their authors name and respective title.
Chapter 3 describes the process of proposed method with
algorithm and corresponding diagrams. Chapter 4
describes the implementation details and information
about used data set. The implementation details are also
explained out in terms of the algorithm process. Chapter 5
describes the result and analysis of the proposed work in
terms Of performance metrics. Chapter 6 describes the
conclusion of the proposed work and also describes the
future work. Chapter 8 specifies the references of research
paper, which use the corresponding details in our work.

Il. LITERATURE SURVEY

Gnanasekaran et. al[1], Grid Computing emerged as a
wide scale distributed system to offer dynamic coordinated
resources sharing and high performance computing. Grid
coordinates the resources that are not subject to centralized
control. It uses standard open, general purpose protocols
and its interfaces. Grid delivers non-trivial qualities of
service such as the response time, throughput, availability
and security.

Caramia et al. [2], Grid scheduling, that is, the allocation
of distributed computational resources to user applications,
is one of the most challenges and complex task in Grid
computing. The problem of allocating resources in Grid
scheduling requires the definition of a model that allows
local and external schedulers t0 communicate in order to
achieve an efficient management of the resources
themselves.

39

;.';: I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (UJITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

Keerthika et. al[3], Grid Computing provides seamless and
scalable access to wide-area distributed resources. Since,
computational grid shares, selects and aggregates wide
variety of geographically distributed computing resources
and presents them as a single resource for solving large
scale computing applications, there is a need for a
scheduling algorithm which takes into account the various
requirements of grid environment.

I1. PROPOSED METHODOLOGY

The basic algorithm of proposed work SBBFP-GS is as
follows:

[M’] = SBBFP-GS (Q, M)

/I Q is the queue for incoming jobs

/I M is a map between jobs and resource nodes

/I M’ is the updated allocation map

Step 1: Initialize the status of all nodes (N).

Step 2: Initial status=.Previous

Step 3: While jobs=N and N>0 do

Step 4: if Current state is ready to change then

Step 5: Current = Get change state (); /Computation stage

Step 6: Threshold = generate threshold (upper bound,
lower bound); //Load Balancing

Step 7: Now Gap Search Optimization technique apply on
Q.

7.1 Initialize gap search parameter €, on the basis of

current state and threshold value, initial point X, < Q

and iteration index k=0.

7.2 Generate a collection of candidate points V,,, < Q

according to a specific generator and associated sampling
distribution.

7.3 Update X,,, based on the candidate pointsV,,;,
previous iterates and algorithmic parameters. Also updates

algorithm parameters 6, . .

7.4 If a stopping criterion iS met then stop, otherwise
increment K and return to step 7.2.

Step 8: Through Gap Search, find the optimized job set in
queue Q.

Step 9: Get first job j from Q.

Step 10: while | # null

Step 11: N; <— the number of nodes required by j;

Step 12: Ny, <—the number of idle nodes;

Step 13:if N; < Ny, then remove j from Q and dispatch

idle

ittoany N ; idle nodes; Updates M accordingly;

if j is not at the head of Q then
insert j int0 Qpacki;
else

N packfin<- the number of nodes running jobs arriving later
than j;

if N, < (Npacsin + Nigie) then

Suspend jobs in Qpacsin that arrive later than j and move
then back to Q According to descending
order of their arrival time until the number of
Idle node is greater than Nj;

Remove j from Q and dispatch it to N; idle nodes;
Update M;

Step 14: j<- get the next job from Q and goto step 10.
Step 15: Go to step 3 with decrement list of nodes N.
Step 16: M” = M;

Step 17: Finally obtain the updated jobs and resource node
allocation map with required load balancing.

V. EXPERIMENTAL STEP:

Load Balancing components have been developed which
executes in simulated grid environment. This application
has been developed using Java and Netbeans. GridSim is
an event-based modular simulator, composed of
independent entities which implement the desired
simulation functionality (see Figure 1). It consists of the
centralized scheduler, the grid resource(s) with the local
job allocation policy, the job loader, the machine and
failure loader and additional classes responsible for the
simulation setup, the visualization and the generation of
simulation output. By now, the Grid users are not directly
simulated but the job loader entity can be used as a parent
class for the future implementation of the Grid user.
Simulator's behavior is driven by the event-based message
passing protocol. For each simulated event, such as the job
arrival or the job completion, one message defining this

40

VOLUME 26, NUMBER 01, 2017

;.';: I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (UJITE)

ISSN: 2395-2946

event is created. It contains the identifier of the message
recipient, the type of the event, the time when the event
will occur and the message data.

fion worklond | —
e ComplexGridlet

JobLoader Scheduler Machine Loader
: ConglexGridlet e, GridResource Creates
3522’??3%? Conpleatidlel \ ’(‘ i
‘ / f‘ vith nsehines
|

Haotine Racuing

tmmmiestion (¢ }
tgprzeents Job | Yachine Nachine \
_r/ Marhing [
el X) \ Gridiesoare
Yigualizator ResultCollectar
Aidvance dSpoecSharcd
I i 7
teus fraphs Stoes data for ohedul iny Techine Tscine N i
Vianlazatar e ! Rerhine Mrhin:
qeetatzs floal : Sndates paciine
ety idesouce tatlures durtg
1.1 Queuels) slularion
f
|

T i) J
Hachive Nochine
‘:‘. iles Fachire Nachine
HE Stlation Tachise ...
T oLl
W L —

1: Main Parts of the GridSim 5.0.2 Simulator

Fig

The JobLoader class of GridSim supports several trace
formats including the Grid Workloads Format (GWF) of
the Grid Workloads Archive and the Standard Workloads
Format (SWF) of the Parallel Workloads Archive.

V. RESULT ANALYSIS

The analysis of the existing work (FCFS, EASY-
Backfilling) and the proposed work (SBBFP-GS) on
different parameters are given in following tables.

Table 1: Average Machine Usage (in Percentage) with
Different Load Balancing Strategies

PROPOSED TECHNIQUE
DAYS FCFS | EASY BACKFILING
(5BBFP-GS)

% 132 128 132
50 0§ 04 04
1015 2 18 2
152 55 Ix 5
205 56 u 50
54 52 524 518
05 b4 il 6
3540 04 3 4
04 il i 03
53 574 i]
3059 i 6. 6
55+ 3 Y 3

We can compare different load balancing technique with
our proposed technique. On the basis of load balancing
with scheduling method, FCFS (First Come First Serve)
and EASY Backfilling used as an existing technique and

Schedule Based Backfilling Policy with Gap Search
(SBBFP-GS) used as a proposed method. There are four
parameters are here for compare results of different
approaches.

(1) Average Machine Usage
(2) Job Cluster Uses/Day
(3) Number of Requested and Used CPU

(4) Number of Waiting and Running Jobs

70
;]
. ! B
60 F
%53 | ——FCFS
- #
g g 40— |
E 30 A / y B m sy BAGKFLLNG
AW v
sﬂ .'I |I I|
0 H—41§
g - 1 '. |
< m | PROPOSED
| TECHNIQUE (SBBFP-
G5)
[!
0
neowmeoWwoWwelwo o
& T o7 M momo o 00
" owWwowolwmowow
i B B B L B ST

Fig 2: Average Machine Usage (in Percentage) with
FCFS, EASY Backfilling and Schedule Based Backfilling
with Gap Search Strategies

Table 2: Job Cluster Uses per Day (in Percentage) with
Different Load Balancing Strategies

DAYS FCFS EASY PROPOSED METHOD
BACKFILLING (SBBFP-GS)
0-5 0.6 0.8 0.6
5-10 40 40 38
10-15 1.8 1.8 1.6
15-20 35.6 il.e 31
20-25 35.2 36.8 34.5
23-30 14.6 15 10.5
30-35 39.8 35.8 35
35-40 12.2 12.6 9.8
40-45 214 21.6 20.8
45-50 42.8 44.4 40
50-535 29.8 31 28
53-60 23.8 28.2 23.4

41

‘:;:;' I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (UJITE)

ISSN: 2395-2946

,' VOLUME 26, NUMBER 01, 2017
50
45
g 40
]
t 35
g ——FCFS
30
d
g 55
T —B-EASY BACKFILLING
g 20
"}
5 15
2 PROPOSED METHOD
R . {3BBFP-GS)
5 H—
om B
n owmwowmowmo wmowmo
D.—l.—lNNf‘ﬂl‘ﬂ'ﬂ"ﬂ'LﬂLﬂ'D
n oowmwouwmwouwmowmo wn
e I B B B - B ST Ty

Fig 3: Job Cluster Uses per Day (in Percentage) with
FCFS, EASY Backfilling and Schedule Based Backfilling
Policy with Gap Search Strategies

As per above graph, proposed technique conservative
backfilling with random search has more uses job clusters
as compare than FCFS and EASY Backfilling method.

VI. CONCLUSIONS AND FUTURE WORK

The proposed SBBFP-GS Algorithm implements load
balancing for scheduling the jobs. Experiments have been
done for makespan that serves as a parameter for
evaluating the efficiency of the algorithm and finally
average resource Utilization that serves as the evaluation
parameter for proper load balancing. From the results and
discussion section it is observed that load balance
threshold achieves a better result than the existing FCFS
and EASY Backfilling algorithms. The proposed SBBFP-
GS algorithm considers the load of each resource at the
time of scheduling which are very important in grid
environment. This can be extended in future with factors
for reducing the communication overhead of the grid
system.

We showed the design and implementation of a protocol
(SBBFP-GS) for load balancing with scheduling in a
Computational Grid. The Grid is partitioned into a number
of clusters and each cluster has a coordinator to perform
local load balancing decisions and also to communicate
with other cluster coordinators across the Grid to provide
inter-cluster load transfers, if needed. Our results confirm
that the load balancing method is scalable and has low
message and time complexities. Our work is ongoing and
we are looking into using the proposed model for real-time
load balancing where scheduling of a process to a Grid
node should be performed to meet its hard or soft deadline.

In future researches nodes can be designed hierarchically
and different classes of sites can be considered for nodes
(resources) in terms of computational capacity including

low, medium and high classes and the efficiency of sites
can be discussed based on them. In addition, for evaluating
of effectiveness of a node, load of each site can be
considered into value function, so that the best site for
executing the task can be selected. Future work will focus
on

* Different scheduling can be applied to optimization
techniques

* QoS Constrains such as reliability can be used as
performance measure.

Our research in this area is still at an early stage and there
are many aspects worthy of further study. First, we have
not modeled the impacts of accuracy of job execution time
estimation on the effectiveness of our proposed load
balancing algorithm. Second, we will utilize migration
threshold dynamically based on real-time observation of
load behavior of system resources. Finally, we do not take
network and hardware failure into account in this study. A
failure model may be employed to study this influence.
Owing to the dynamic nature of the practical grid
environment, designing an ideal load balancing algorithm
still remains a challenge.

REFERENCES

[1] B.Priya and Dr.T.Gnanasekaran, “Grid Architecture for
Scheduling and Load Balancing — An Assessment”,
ICICES, 2014.

[2] Massimiliano Caramia and Stefano Giordani,
“Resource Allocation In Grid Computing: An
Economic Model”, Wseas Transactions On Computer
Research, Page 19-27, Issue 1, Volume 3, January
2008.

[31 [3] P. Keerthika and N. Kasthuri, “A Hybrid
Scheduling Algorithm With Load Balancing For
Computational ~ Grid”, International Journal of
Advanced Science And Technology, Vol.58, Pp.13-28,
2013.

[4] K. Sathish and A. Rama Mohan Reddy, “Maximizing
Computational Profit in Grid Resource Allocation
using Dynamic Algorithm”, Global Journal of
Computer Science and Technology Cloud and
Distributed, Volume 13, Issue 2, 2013.

[5] Leyli Mohammad Khanli and Behnaz Didevar, “A
New Hybrid Load Balancing Algorithm in Grid
Computing Systems”, International Journal of
Computer Science Emerging Technology, Vol-2 No 5,
Page 304-309, October, 2011.

[6] Resat Umit Payli, Kayhan Erciyes and Orhan
Dagdeviren, “Cluster-Based Load Balancing
Algorithms For Grids”, International Journal Of
Computer Networks & Communications, Vol.3, No.5,
Sep, Page 253-269, 2011.

[7] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load
Balancing Strategy for Grid Computing”, International

42

;.";:I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (UJITE) ISSN: 2395-2946
i VOLUME 26, NUMBER 01, 2017

Journal of Computer, Electrical, Automation, Control
and Information Engineering Vol. 2, No:7, 2008.

[8] Ralf Diekmann, Andreas Frommer and Burkhard
Monien, “Efficient schemes for nearest neighbor load
balancing”, www.elsevier.com/locate/parco, 1999.

[9] U. Karthick Kumar, “A Dynamic Load Balancing
Algorithm in Computational Grid Using Fair
Scheduling”, International Journal of Computer
Science Issues, Vol. 8, Issue 5, No 1, September 2011.

[10] Pawandeep Kaur and Harshpreet Singh, “Performance
Analysis of Adaptive Dynamic Load Balancing in Grid
Environment using GRIDSIM”, International Journal
of Computer Science and Information Technologies,
Vol. 3 (3), Page 4473-4479, Apr-2014.

[11] Kai Lu, Riky Subrata and Albert Y. Zomaya, “On the
performance-driven load distribution for heterogeneous
computational grids", www.elsevier.com/locate/jcss,
Feb-2007.

[12] Priyanka Chauhan and Ritu Bansal, “Efficient Load
Balancing and Resource Scheduling for Optimizing
Cost and Execution Time Using ACO-A*Algorithm”,
International Journal of Recent Research Aspects
ISSN: 2349-7688, Vol. 1, Issue 2, pp. 189-196,
September 2014.

[13] [13] Frank C. H. Lin and Robert M. Keller, “The
Gradient Model Load Balancing Method”, IEEE
Transactions on Software Engineering, Vol. Se-13, No.
1, January 1987.

[14] Nikolaos D. Doulamis, Anastasios D. Doulamis,
Emmanouel A. Varvarigos and Theodora A.
Varvarigou, “Fair Scheduling Algorithms In Grids”,
IEEE Transactions On Parallel And Distributed
Systems, Vol. 18, No. 11, November 2007.

[15] Rajkumar Buyya and Manzur Murshed, “GridSim: A
Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid
Computing”, http://www.buyya.com/gridsim/, 2011.

