‘-::.I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

Design aspects and trends among the Recent
Compilers and Interpreters

Dharmendra Kumar*

M. Tech. Student with Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal

Abstract: Mapping from high to low i.e. simple mapping of a
high level language program to machine or assembly language
produces inefficient execution. Higher the level of abstraction
more Will be the inefficiency towards CPU communication. If
not efficient then High-level abstractions are useless. Hence
the designers need to provide a high level abstraction with
performance of giving low-level instructions. It requires the
translation of a high level language program to the
corresponding low level or machine level instructions. This
research paper discusses the most fundamental and critical
design aspects between the Compiler and Interpreters.
Compiler construction is a course competence seldom needed
in the industry. Yet we claim that compiler construction is a
wonderful subject that benefits from virtually all the computer-
science topics. In this paper we show in particular why
Compiler Construction is a killer example for Interpreted
programming languages, providing a unique opportunity for
students t0 understand what it is, what it can be used for, and
how it works.

Keywords-- Lexical Analysis, Syntax Analysis, Semantic
Analysis, Code Optimization, Target Code, Complexity, CPU,
Architecture.

I INTRODUCTION TO COMPILER

A Compiler is a program (system software) that accepts or
reads the statements of a program written in one
programming language called the source programs, and if
these statements make sense in that programming
language, it (compiler) translates that program into
statements Of a semantically equivalent code in another
language. This resultant code produced after translation is
called as the target language code or target code.
Examples of compiled languages are C, C++, PASCAL,
FORTRAN, COBOL, ADA, ALGOLS60, etc.

We have the compiler for converting the following source
code to the indicated target code:

* Modula-2to C
» Javato byte code

* C language to assembly language

e COOL to MIPS code

Source Program Input

! |

Compiler | m—p| Target Program

! |

Error messages Output

Figure 1: Compilation Process

Compilers generate code that is reasonably fast, but is
target specific (it only runs on a particular computer
system).

A compiler translates a high level language, which is
architecture independent, into assembly language, which
is architecture dependent. While an assembler translates
assembly language programs into executable binary
codes. For fully compiled languages like C and Fortran,
the binary codes are executed directly by the target
machine. Java stops the translation at the byte code level.
The Java virtual machine, which is at the assembly
language level, interprets the byte code (hardware
implementations of the JVM also exist, in which Java
byte codes are executed directly.)

A compiler may stop short of generating actual target
code instead and generate some form of assembly to be
processed further by a translator and/or the language
processor provided with the operating system or bundled
with the compiler.

1.1 Target Language

Compilers may generate many types of target codes
depending on machine while some compilers make target
code only for a specific machine. The target language may
be another programming language or the machine
language of another computer between a microprocessor
and the super computer. It is generally the object code for
the target machine i.e. the code in the machine
instructions of the computer. The object code, are then
linked with standard libraries by the Linker to produce an
executable file. As the entire program is converted to
machine code, it runs very quickly.

20

‘-::;' I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

The target program for most of the compilers is normally
the:

e equivalent program in machine code — the re-
locatable object file

* same machine language that is the target for
assemblers

Re-locatable machine code is generally the separately
compiled modules of a program. Linker is a program
which combines the re-locatable machine code into a form
suitable for execution.

Indeed the purpose of compilers is to ease the process of
creating the program in machine language, but most of the
early compilers and even the modern compilers compile
the source program into the Assembly language program
first, and then let an assembler to finish the translation to
machine language. The example of such an compilers are
the C language Compilers. These compilers produce the
assembly code as its target language that is passed to an
assembler for further processing to translate it into the
object code. Other compilers perform the job of the
assembler, producing the re-locatable machine code that
can be passed directly to the linker/loader.

1.2 Inputs to the Compiler

The input to the Compiler is the standard high level
imperative programming language like Java, C, C++ etc.
The following constructs from the source program are
accepted by the compiler as an input:

(i) State: The state defines the following constructs from
the source program:.

e Variables (Local, global, static, register, extern,
reference, address, instance etc.)

¢ Record and Structure
e Class

¢ Enumeration

e Union

e Array and Lists
(ii) Computation: The computation denotes the following:

e Expressions (arithmetic, logical, relational etc.)
e Assignment statements
e Control flow structures (conditionals, loops etc.)

e Procedures, subroutines, functions, methods

After accepting the input, the Compiler does the
translation producing some output as described under.

1.3 Output of the Compiler

The output from the Compiler is a set of low level
assembly or machine instructions. Translator generates
codes to allocate storage for the variable and uses the
address of allocated storage wherever the code references
the variable. Compiler produces following constructs as
the output, which are occurring in the corresponding
object code (or some other code produced by the
compiler).

(i) State: This corresponds to the following:
* Registers

e Memory with Flat Address Space (Not necessarily
absolute)

(if) Machine Code/ Target Code: They can be of the
following form:

e Load, Store instructions
e Arithmetic, logical operations on registers
e Branch instructions
A compiler involves the siX phases as given under:
1. Lexical analysis
2. Syntactic analysis
3. Semantic analysis
4. Intermediate code generation
5. Code optimization

6. Code generation
1.4 General Tasks Performed by a typical Compiler
A Compiler in general performs the following tasks:

* Reads and understands the source program
* Precisely determines what actions it require
* Figure out how to faithfully carry out those actions

* Put the translated instructions for the computer to
carry out those actions into a file called as the
object file (in most of the cases but excluding some
exceptions)

21

VOLUME 26, NUMBER 01, 2017

‘-::;' I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

» Cooperate with the debugger for error handling

1.5 Cost of Designing a Compiler

Cost of Designing a Compiler is proportional to the
following:

e Complexity of the source code (Lesser be the
complexity, more easily the source code be
converted into the target code)

e Complexity of the architecture of the target
machine (includes addressing modes, instruction
set etc.)

* Flexibility of the available instruction set
(closeness of the instructions with the machine
architecture). An instruction directly invokes some
of the hardware of the CPU/machine. An itn
directly invokes some of the Hw of the
CPU/Machine

1.6 Desirable Features of the Compilers: An Ideal
Compiler

We desire the following features from the good compilers:
e Smaller in size
e Better understanding of programming languages

e Correctness - preserve the meaning of the code
after translating them

e Takes less time for compilation

e Better speed of compilation (translation) and
generation of target code

e Cooperation with the debugger - Good error
reporting/handling

e Support for separate compilation
e Written in a high level language

e Produces the target codes that are smaller in size
and executes faster

e Portable w. r. t. the machine architecture

e Modular (separate compilation) i.e. entire operation
should be divisible into subroutines

e Compilation time is proportional to the size of the
program. Hence the time complexity is O(n); where
n is the measure of the program size (usually the
number of characters)

Il. INTRODUCTION TO INTERPRETER

An Interpreter is a translator in that it reads a source
program and translates it immediately, just as a human

interpreter makes a verbal translation that is hard and
understood immediately. An Interpreter executes the
source program immediately as it is read, rather than
generating the machine dependent object code. An
Interpreter bridges an execution gap without generating a
machine language program but appears to execute a
source program as if it were a machine language.

Input Data
Source Int 1 : Output/
Program™ >} nterpreter esult

'

Error messages

Figure 2: Interpreter

The Interpreter looks at and executes program on a line-
by-line basis or one statement at a time rather than
producing object code. As opposed to the Interpreter a
Compiler is a program which takes some form of source
program as input and produces the corresponding code
called as the target code in general. Compiled languages
can achieve the greater efficiency while Interpreted
language can offer a higher degree of flexibility.

A language is interpreted if source code is translated only
into an intermediate form, which can’t be executed
directly but must be interpreted at run time. Typically
imperative languages are compiled and typically
applicative languages and functional languages tend to be
interpreted. Examples of interpreted languages are Unix
shells (sh, csh, ksh, etc.), BASIC (Beginners All Purpose
Symbolic Instruction Code) and Java (Though Java is
both, compiled as well as Interpreted.) BASIC, QBASIC,
Perl, JavaScript, Python, (pure) LISTS and (though not
applicable) APL and SNOBOL.

An Interpreter generally has three phases (or
components.) as given under:

(i) Symbol Table and other Tables: Interpreter holds
the information concerning entities in the source
program. The other tables are like the compiler.

(ii) Data Store: It contains the values of the data items
declared in the program being executed.

(iii) Data Manipulation routines: It contains a routine
for every legal data manipulation action in the
source language. There are a number of routines.

Il TRANSLATION

3.1 Compiler

A Compiler translates the whole program into the
machine code at once. It translates the source code into an
executable program that can be run at a later time.

22

‘-::;' I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

Translation and execution are the separate activities.
Process is slow as the compilers are concerned with the
target machine language and features. A Compiler
converts (translates) the entire program into machine
code, only when all the errors are removed. It do not give
any feedback until the whole program is compiled and
processed.

3.2 Interpreter

Instead of translating, it interprets the source program
statements one by one or line by line. It read through
source code from a program and, turns (translate) it
directly into actions. Here translation and execution are
the combined activities. This process is fast as the
Interpreter does not have to be concerned with the target
machine language and features. It interprets the program
statements into an executable form immediately as it
(statement) is read, directly without creating the object
code. It gives rapid and direct feedback.

V. TRANSLATION SPEED AND TIME

In one sense, the Interpreter never really completes the
translation process. Because the Interpreter does not have
to be concerned with the target machine features, it can
often process a line of source program much faster than
the same code is compiled and interpreted. An Interpreter
reads its input program over and over to compute the
result but the compiler translates it once.

Compiler takes longer to get the output from the first time
a program is run, but subsequent runs by the compiler are
faster than that from the Interpreter because no additional
translation is required. In contrast the compiler creates a
target code which will be executed at a later time. It takes
longer to run a program under an Interpreter than to run
the compiled code but it (Interpreter) generally takes less
time (time only needed by the Interpreter only, excluding
the time taken by the programmer) to interpret it than the
total time required to compile and run the same program.

V. ANALYSIS PROCESS

Interpreting the code is slower than running the compiled
code because the Interpreter must analyze each statement
in the program each time it is executed and then perform
the desired action whereas the compiled code just
performs the action. Both compiler and Interpreter
analyze a source program to determine itS meaning. An
Interpreter might well use the Scanner and Parser like the
compiler and then interpret the resulting Abstract syntax
tree (AST). Hence each line of the source program sent to
the interpreter is scanned, parsed and then executed
directly. The next source line is then fetched from
memory and the same process is repeated for it, till the
entire program has been executed. Hence whenever a
program need to be executed repeatedly, the source code
has to be interpreted every time.

In case of Compiler the analysis of a statement of the
source program is followed by the synthesis process. For
any number of run of the same program, analysis is
performed only once to generate the target code. While in
case of Interpreter, the analysis of a statement of the
source program is followed by the actions which
implement itS meaning. For every run of the same
program, analysis is performed the number of times the
program is run.

VI. MEMORY REQUIREMENT

In the process of Interpretation, the entire source code
needs to be present in memory until the execution is
complete, as a result of which the memory space required
is more when compared to that of a compiled code. Hence
the Interpreter, besides being slow in execution, will
require more memory. It will however, permit dynamic
changes in the specification as only the changed portion
of the program need to be Interpreted.

Access to variables is also slower in an Interpreter
because the mapping of Identifiers to storage locations
must be done repeatedly at run time rather than at compile
time. There are various compromises between the
development speed when using an Interpreter and the
execution speed when using a compiler.

It is the machine dependent (generally object) code
(created after the compilation) which are executed. Hence,
neither the source program nor the compiler is required
for execution process. Hence during the execution process
neither the source program nor the compiler is present
inside the memory.

As no target code is created in case of Interpreter, SO each
time the program is executed, every line of the source
program is first analyzed, checked for syntax error and
then the code is executed. Hence, both the source program
and the Interpreter are needed for the execution process.
For this purpose the source program and the interpreter
are present inside the memory.

VII. COMPLEXITY

7.1 Compiler

Compiler is a complex program, generally big in size and
generates the code for the particular platform. Hence it
requires more main memory itself. Hence the
development complexity is more. It is less expensive in
terms of CPU time, as complete program is subjected to
the simultaneous translation and this translated program
(generally object code) is executed by the CPU.

7.2 Interpreter

Interpreting is more expensive in terms of CPU time, as
each line is subjected to the interpretation cycle which
involves the analysis also. Hence CPU basically switches

23

:-::;I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

VOLUME 26, NUMBER 01, 2017

ISSN: 2395-2946

from the translation to other task, if other task is there.
Interpreter is a simple and comparatively smaller program
which does not involve the code generation phase. Hence
development complexity is low. Platform dependency is
almost nil.

VIIL. CONCLUSION

The term Compiler is generally reserved for more
complex languages, where there iS no intermediate and
direct relationship between the source language and the
target language. Most of the compiled languages do not
use the line numbers.

Designers involved for writing the Compilers undergo
good Software engineering experience. Also the Compiler
design involves an application of a wide range of
theoretical techniques as: Data Structures, Theory of
Computation, Algorithms, System software and Computer
Architecture.

IX. FUTURE SCOPE

The future compiler techniques can be used to create
novel and enhance existing dependability mechanisms to
create a wider range of cost/dependability tradeoffs than is
currently available. Similarly, compilers can assist in the
area Of error detection by expanding the range of errors
that can be detected. New compiler techniques, can be
used to dynamically guide a system as it makes choices,
with cost, dependability, and performance tradeoffs, in
response to the occurrence of faults and changes in the
environment.

REFERENCES

[1] Stevan S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann

[2] D. M. Dhamdhere. System Programming and
Operating Systems. Tata cGraw-Hill

[3] Y.N. Srikant and Priti. Shankar. The Compiler Design
Handbook: Optimizations and Machine Code
Generation. CRC Press, 2002

[4] PyPyTechnology:http://doc.pypy.org/en/latest/interpre
ter-optimizations.html#introduction

[5] J. E. Hopcroft, R. Motwani, and J.D. ulman
Compilation Techniques. Pearson Education Asisa,

India

[6] Self Optimizimg AST:
http://www.christianwimmer.at/Publications/Wuerthin
gerl2a/

[71 Optimizing Indirect Branch Prediction Accuracy in
Virtual Ma-chine Interpreter
https://www.scss.tcd.ie/David.Gregg/papers/toplas05.p
df

[8] Andrew W. Appel. Modern Compiler Implementation
in Java. 2" edition Cambridge University Press

[9] Keith D. Cooper and Linda Torczon. Engineering a
Compiler. Morgan Kaufmann

[10] Flemming Neils, Hanne Riis Neilson, and Chris
Hankin, Principles of Program Analysis Springer.

AUTHOR'S PROFILE

Dharmendra Kumar has received his Bachelor of
Engineering and Technology degree in Computer Science
and Engineering from Harcourt Butler Technological
Institute (HBTI), Kanpur in the year 2003. At present he
is pursuing M.Tech. in Computer Science and
Engineering from gargi institute of science & technology,
Bhopal (Affiliated to Rajiv. Gandhi Proudyogiki
Vishwavidyalaya, Bhopal.) His area of interest includes
Compiler Design, Operating System, System
Programming, Computer Architecture, Data Structure and
C/C++ programming languages.

24

