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Abstract - A numerical study on boundary layer flow behavior,
heat and mass transfer effects on MHD boundary layer flow of
a viscous incompressible and radiating fluid over an
exponentially stretching sheet With heat source 1S presented in
this paper. The initial governing boundary layer equations are
transformed t0 a system of ordinary differential equations,
which are then solved numerically by applying the implicit
finite difference scheme known as Keller Box method. A
parametric study is conducted and so that Numerical results are
obtained for the velocity, temperature and concentration as well
as the skin-friction coefficient, the local Nusselt number and
local Sherwood number for different values of the material
parameters, namely, the magnetic parameter, heat source
parameter, radiation parameter, Schmidt number and Prandtl
number are discussed in detail. The results are presented in
both graphical and tabular forms.

Keywords - Exponentially Stretching Sheet, MHD, Heat and
Mass Transfer, Heat Source, Radiation. Keller Box method.

1. INTRODUCTION

The industrial processes like hot rolling, wire drawing,
spinning of filaments, metal extrusion, crystal growing,
glass fiber production, cooling of a large metallic plate in a
bath, which may be an electrolyte,
etc. to require the study of flow and heat transfer over a
stretching surface. In all these cases, the quality of final
product depends on the surface heat transfer rate and the
skin friction coefficient. Magyari and Keller [1]
investigated the steady boundary layers on an
exponentially stretching continuous surface with an
exponential temperature distribution. Crane [2] was the
first to consider the boundary layer flow caused by a
stretching sheet which moves with a velocity varying
linearly with the distance from a fixed point. The heat
transfer aspect of this problem was investigated by
Carragher and Crane [3], under the conditions when the
temperature difference between the surface and the
ambient fluid is proportional to a power of the distance
from a fixed point. Shanker and Kishan [9] presented the
effect of mass transfer on the MHD flow past an

impulsively started infinite vertical plate. Bhaskara Reddy
and Bathaiah [10, 11] analyze the Magnetohydrodynamic
free convection laminar flow of an incompressible
Viscoelastic fluid. Later, he was studied the MHD
combined free and forced convection flow through two
parallel porous walls. Elabashbeshy [12] studied heat and
mass transfer along a vertical plate in the presence of
magnetic field. Gangadhar and Bhaskar Reddy [13]
analyzed the problem of chemically reacting MHD
boundary layer flow of heat and mass transfer over a
moving vertical plate in a porous medium with suction.
The heat source/sink effects in thermal convection, are
significant where there may exist a high temperature
differences between the surface (e.g. space craft body) and
the ambient fluid. Heat generation is also important in the
context of exothermic or endothermic chemical reactions.
Recently, Poornima and Bhaskar Reddy [27] presented an
analysis of the radiation effects on MHD free convective
boundary layer flow of nanofluids over a nonlinear
stretching sheet. However, the interaction of radiation with
mass transfer due to a stretching sheet has received little
attention.

Renuka Devi and Bhaskar Reddy[31] presented analysis of
the radiation and mass transfer effects on MHD boundary
layer flow due to an exponentially stretching sheet with
heat source. Hence, the aim of the present study is to
analyze the effect of thermal radiation and mass transfer on
the steady magneto hydrodynamic (MHD) boundary layer
flow due to an exponentially stretching sheet in the
presence Of heat source or sink. The governing boundary
layer equations have been transformed to a two-point
boundary value problem in similarity variables and the
resultant problem is solved numerically by applying the
implicit finite difference scheme known as Keller Box
method. A parametric study is conducted and so that
Numerical results are obtained for the velocity,
temperature and concentration as well as the skin-friction
coefficient, the local Nusselt number and local Sherwood
number for different values of the material parameters,
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namely, the magnetic parameter, heat source parameter,
radiation parameter, Schmidt number and Prandtl number,
are discussed in detail.

2. FORMULATION OF THE PROBLEM

The present problem is based on a steady two-dimensional
flow of an incompressible viscous, electrically conducting
and radiating fluid past an exponentially stretching sheet is
considered. The sheet is placed in a quiescent ambient
fluid of uniform surface temperature and concentration T,
and C,.

Figure 1. Physical modal and coordinate system.

The x-axis is taken along the plate and y-axis normal to it.
A variable magnetic field of strength B(x) is applied
transversely and the induced magnetic field is assumed to
be neglected, which is justified for MHD flow with small
magnetic Reynolds number. Hall effects and Joule heating
are also negligible. The level of concentration of foreign
mass is assumed to be low, so that the Soret and Dufour
effects are negligible. Under these assumptions along with
the Boussinesq and boundary layer approximations, the
system of equations, which models the flow is given byand
radiating fluid past an exponentially stretching sheet is
considered. The sheet is placed in a quiescent ambient
fluid of uniform surface temperature and concentration and
. The x-axis is taken along the plate and y-axis normal to
it. A variable magnetic field of strength B(X) is applied
transversely and the induced magnetic field is assumed to
be neglected, which is justified for MHD flow with small
magnetic Reynolds number. Hall effects and Joule heating
are also negligible. The level of concentration of foreign
mass is assumed to be low, so that the Soret and Dufour
effects are negligible. Under these assumptions along with
the Boussinesq and boundary layer approximations, the
system of equations, which models the flow is given by
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The boundary conditions for the velocity, temperature and
concentration fields are

u=U, =Uget v=0,T =T, = T,+TyezL

C =C, = Cp+Cyert aty =0
u->0T->T,C-> C,asy >

®)

where u and v are the velocity components along the x and
y axes, respectively, T - the temperature of the fluid and C
- the fluid concentration in the boundary layer, v - the
kinematic viscosity, p - the fluid density, Cp - the specific
heat, B(x) - the magnetic field of constant strength, qr - the
radiative heat flux, L - the reference length,U0 - the
reference velocity,TO - the reference temperature,CO - the
reference concentration, Tw - the temperature uniform of
the sheet, Cw - the concentration uniform of the sheet, D -
the coefficient of mass diffusivity and k - the thermal
conductivity of the fluid. By using the Rosseland
approximation (Brewster [28]), the radiative heat flux qr is
given by
40*  oT*

4 =—-= ®)

where o* is the Stefan-Boltzmann constant and K - the
mean absorption coefficient. It should be noted that by
using the Rosseland approximation, the present analysis is
limited to optically thick fluids. If temperature differences
within the flow are sufficiently small, then the equation (7)
can be linearized by expanding T* into the Taylor series
about T,,, which after neglecting higher order terms takes
the form

T* = 4T3 T — 3T4 @)

In view of the equations (7) and (8), the equation (3)
reduces to

ar ar k 160°T3
U—+v—=(—+——"2
dx ay pPcp 3pep K

%T | Qo
R G DI

To obtain similarity solutions. It is assumed that the
magnetic field B(x) is of the form

X

B(x) = Bye2L

where BO is the constant magnetic field.
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The continuity equation (1) is satisfied by the Cauchy
Riemann equations

u=% and v=-2 )

where Y(x,y) is the stream function.

In order to transform the equations (2), (4) and (8) into a
set of ordinary differential equations, the following
similarity transformations and dimensionless variables are
introduced (Sajid and Hayat [25]).

N =

Y (xy) = ZOUL €3 ), m= (1) ety

u=Uget ' (), v =—(22) ezt (FGn) +nf (n))
T= T +Toet 6(n), Q = 2,C= Co+Coe ¢ (1)

46*T3
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KK
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where f (1) is the dimensionless stream function, 6 - the
dimensionless temperature, ¢ - the dimensionless
concentration, # - the similarity variable, M- the magnetic
parameter, Pr - the Prandtl number, Q - the heat source or
sink parameter, Sc- the Schmidt number and R- the
radiation parameter. In view of the equations (9) and (10),
the equations (2), (4) and (8) transform into

U+ ff =2+ Mf =0 (11)
(1+§R)0” +Prfo —Prf 6 +PrQ 6 =0 (12)
¢ +Scfp' —Scf'¢p=0 (13)

The transformed boundary conditions can be written as
f=0f =16=1¢=latn=0
f =0=¢=0atn > o (14)

The main physical quantities of interest are the skin
friction coefficient f*(0) , the local Nusselt number
—6'(0)and the Sherwood number —¢' (0) which represent
the wall shear stress, the heat transfer rate and mass
transfer rate at the surface, respectively. Our task is to
investigate how the values of f (0),—8( 0) and
—¢ (0) vary with the radiation parameter R, magnetic
parameter M and Prandtl number Pr.

3. NUMERICAL SOLUTION

The set of coupled non-linear governing boundary layer
equations (11) - (13) together with the boundary conditions
(14) are solved numerically by using implicit finite

difference scheme known as Keller Box method. First of
all, higher order non-linear differential Equations (11) -
(13) are converted into simultaneous linear differential
equations of first order and they are further, transformed
into initial value problem. The resultant initial value
problem is solved by employing implicit finite difference
scheme known as Keller Box method. The step size
An=0.04 is used to obtain the numerical solution with four
decimal place accuracy as the criterion of convergence.
From the process of numerical computation, the skin-
friction coefficient, the Nusselt number and the Sherwood
number, which are respectively proportional to
£ (0),—6'(0) and —¢ (0) , are also sorted out and their
numerical values are presented in a tabular form.

4. RESULTS AND DISCUSSION

In order to get a clear insight of the physical problem, the
velocity, temperature and concentration have been
discussed for various numerical values which encountered
in the governing equations. The effects of various
parameters on the velocity are depicted in Fig. 2.From the
graph it is observed that for fixed values of Pr, R, Q ,Sc
and for increasing magnetic parameter M=0,1,2,4 the
velocity profiles decreases and the curve meets Xx-axis at
affixed value. From Fig .3 to 6 depicts effects of various
parameter On temperature The effects of various
parameters on the concentration are depicted in Figs. 7-8.
In Fig 3 we observe increase in magnetic parameter M=0,
1,2 4 with fixed values of Pr, R ,Q, Sc ,the temperature
profile increases initially and then decreases and meets x-
axis at finite distance. From Fig .4.we observe for fixed
values of M,R,Q and Sc and increasing values of
Pr=1,2,3,4,the thermal boundary layer thickness decreases
and meet x-axis at a finite value.Fig.5. depicts the effect of
radiation parameter R on the temperature as R takes the
values 0,1,2,3 with fixed M=2,Pr=1,0=0.5 and Sc=0.22
the temperature profile decreases and meets x-axis .It is
observed from figure 6,increase in heat source parameter Q
with  M=2,Pr=R=1,Sc¢=0.22 leads to
temperature profile initially and then starts decreasing and
meets

increase in

x-axis. It is noticed that as the heat source parameter
increases, the temperature increases. The effect of the
magnetic parameter (M) on the concentration field is
illustrated in Fig.7. depicts the effect of concentration
parameter C with

Pr=R=1,Q=0.5,5¢=0.22 as the magnetic parameter
M=0,1,2,4 increases the concentration is found to be
increasing and leads to increase in concentration profile
initially and then starts decreasing and meets x-axis. The
effect of the Schmidt number (Sc) on the concentration
field is illustrated in Fig. 8. depicts the effect of
concentration parameter C with Pr=R=1,0=0.5,M=2 as the
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Schmidt number Sc =0.24,0.62,0.78,2.62 increases
concentration boundary layer thickness decreases and
meets X-axisThe present results presented in Table 1., and
are compared with those of Magyari and kellar [1],
Bhaskar Reddy [31] and Bidin and Zazar [26] and they
agree closely with negligible amount of error.

5.CONCLUSION

The effect of radiation and mass transfer on MHD
boundary layer flow due to an exponentially stretching
sheet with heat source/sink are investigated. The numerical
approximations are obtained by using Keller box method
.They agree closely with the results which are available in
the literature and presented in Table[1].

The following conclusions are drawn.

e With increasing magnetic field intensity the
momentum boundary layer thickness decreases
while both thermal and concentration boundary
layer thickness increases.

e The effect of radiation reduces temperature.

e The concentration reduces as Schmidt number
increases.

e The magnetic field, radiation and Prandtl number
enhances the heat transfer rate.

Pr=R=1,0=05,5c =022

Fig.2 Velocity for different values of M
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Table 1 Numerical values of 6 (0) at the sheet for different values of R,M and Pr when Q =0 and Sc =0, Comparison
of the present results with that of Magyari and Kellar [1],Bhaskar Reddy[31] and Bidin and Nazar [26]

R

M

Pr

Present
Results

Shooting
Techniques[1]

Keller Box
Method[26]

Runge-Kutta
Method[31]
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