g™ IJITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (JITE) ISSN: 2395-2946
e VOLUME 20, NUMBER 02, 2016
Android Security Management
AshimaKalra, Er. Navjot Singh
Abstract - The android security model is based on

aauthorization and sandbox manner. Each application runs in
its own Dalvik Virtual Machine with a unique 1D assigned to
application. This prevents an application from using
information/data of another application. Although Android is
most widely used, there exists a lack of applications in order to
completely benefit from this operating system. thus, third party
application developers create new applications and launch them
in the Android Market. This permits users access to thousands
of applications; it is however important that the user needs to
totally trust the applications before installing them. It is for this
reason that every application publishes the permissions that it
requires during installation. The user can either grant all
permissions or deny all, in which case, the installation of the
application is aborted. In order to distribute these applications
Google came up with Android Market. Here users can access
both paid and fiee applications. Every Android phone has this
application and hence users can browse and download any
application they entail from Android Market. However, there
have been many malicious applications published in Android
Market. Hence it means a necessity for Google 10 test each and
every application and fresh the Android Market by eradicating
malwares. 1t is also important to see to it that the loopholes and
bugs of current applications are not exploited by hackers. One
way in which an attacker can entice users to download the
malevolent software S by repackaging applications using
reverse engineering tools. The attacker changes the code in
order t0 incorporate the spiteful code and repackages the
application and publishes them in the app market. Users
typically cannot differentiate between the malware application
and the legitimate application and thereby end up installing the
malware. Reverse Engineering is a process with the aid of
which we can discover and understand the complete working of
an application by learning its function, structure and functions.
In this project the tools we use for reverse engineering are
AdvanceApkTool, Dex-Manger, DextoJar and Jd-Gui.

Keywords - Android app,Application PacKage File, APK files
structure,Android’s four-layer model

1. INTRODUCTION

The most common operating system (OS) for mobile
device, as of early 2013, is the Android OS by Google.
The Android platform is designed with openness in mind,
meaning all of the system’s source code is presented for
download, modification and review The Google Play Store
uses a blacklist style of accepting Android applications
(“apps”); so as to is all apps are accepted unless they are
reported by users. Android relies on its permissions system
in order to lessen the risk of a malicious app on a device. A
user can manually check the list of permissions
necessaryby the app upon installation as a method to
determine if it is a legitimate app [1].

APPLICATIONS

Phone

SQLite

WebKit

Tbe

LINUX KERNEL

c F
Camera Driver .

Figure 1.Android’s four-layer model [2]

Figure 1 shows the four layers of the Android operating
system. The monolithic Linux kernel placed on the lowest
layer. It is responsible for process and memory
management, handles device drivers and additionally
supplies the hardware abstraction layer to other parts of the
system. The kernel has been greatly optimized to meet the
requirements of a mobile device [2].

1.2 Android app:

Nowadays, occupying the largest market share among
allvarieties of apps, Android apps have drawn increasing
attentionof people.According to the statistics data from the
number of apps from the largest Android distribution
market, i.e. GooglePlay has reached to millions level, and
is continually sharplylncreasing. However, huge app
market also attracts attackers who upload elaborate
malware without any warning. With the improvement of
Android apps, people are used to logging inpersonal
websites, storing private data, and yet paying
onlinethrough Android smartphones. Privateinformation
thereforebecomes the goal of attackers. [3] Android is
based on Linux kernel where applications run data
independently and inter process communication is strictly
based on a permission system. Applicdownload requires
users to blindly grant access to the listed permissions or
deny installation. [4]. Android apps are developed in Java
language. Compiled class files are converted in a single
executable dex file (dalvik executable) using Dx tool to
run under constrained processing and low memory
environment. Executable source of an app is stored in
dalvik. App is a zip file as shown in figure 1 runs on a
register based dalvik virtual machine developed for low

72

:::,_"::LIJITE

VOLUME 20, NUMBER 02, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

memory, and constrained embedded

environment [6].

processing

1.2.1 Application PacKage File

Android Manifest is binary consisting information such as
Package name, Permissions an app would use once
installed, Activities running within an app as well as
services, receivers and content providers. Resource in
application package stores icons, shortcuts, images,
dimension constants,string constants, and drawable
components. CLASSES is a dalvik executable that stores
executable code of the app .Android apps are self-signed
by the developers with on third party signature
authentication required for development and distribution.
All of the above components shown in figure 1 is
combined into a single Android PacKage (APK)[6].

AndroidM en ifest. xmil

Resources

META.INF/MENIFEST.MF

METALINF/CERI.SF

META.INF/CERT.RSA

Figure 2.Android PacKage File format [6]
1.3 APK files structure:

An APK consists at a minimum, the directories and files
shown in Figure 2. This AndroidManifest.xml file is most
important in the research. This is stored in a binary XML
layout and must be converted to a plain text format before
becoming human-readable. This file includes information
such as the minimum Android version the app was
designed for, the majormovement (which is launched upon

opening the app) and other details important to the basic
functionality of an Android app. Most significantlyfor our
purposes, it contains declarations of the Android
permissions the app requires [1].

2. LITERATURE SURVEY

The research work performed in this field by diverse
researchers is presented as follows:

QuangDoet al. in (2014)[1] Android mobile devices are
becoming a admired alternative to computers. The rise in
the number of tasks performed on mobile devices means
perceptive information is stored on the devices.
Consequently, Android devices are a potential vector for
scandalous exploitation. Presented research on enhancing
user privacy on Android devices can generally beclassified
as Android alterations. These solutions often involve
operating system modifications, whichsignificantly reduce
their capability. This research proposes the utilize of
permissions removal, wherein a reverse engineering
process is used to eliminate an app’s permission t0 a
resource. The repackaged app will lope on all devices the
original app supported. Findings that are based on a study
of seven accepted social networking apps for Android
mobile devices indicate that the difficulty of permissions
removal may vary among types of permissions and how
well-integrated a permission is within an app

Andr'eEgnerset al. in (2012)[2] Permission models have
become very frequent onsmartphone operating systems to
manage the rights granted toinstalled third party
applications (apps). Past to installing anapp, the user is
typically accessible with a dialog box screeningthe
permissions requested by the app. The user has to
chooseeither to accept all of the requested permissions, or
prefer notto proceed with the installation. Most normal
users are not ableto fully grasp which set of permissions
approved to the applicationis potentially harmful. In
addition to the knowledge gap betweenuser and application
programmer, the omitted granularity andalterability of
most permission model implementations help anattacker to
circumvent the permission model. In this paper it focuses
on the permission model of Google’s Android platform,
detail the permission model, and present a collection of
attacksthat can be composed to fully compromise a user’s
device usinginconspicuously looking applications
requesting NON-SUSPICiOUS permits.

ChenkaiGuoet al. in (2015) [3] Attackers who designed
malware appear to be so cautious that most of the malware
are disguised as normal apps. This brings about huge
difficulties to detect the malware. Similar with
conventional PC testing, there are two main detection
methods for Android malware: static analysis and
energetic monitoring. However, these methods inevitably

73

4 JITE

VOLUME 20, NUMBER 02, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

face the challenge of code confusion performance cost. In
this paper, a new assessment algorithm based on the
statistic technologies is proposed. By extracting permission
features, it proposes a sensible method to judge whether an
Android app is malicious or not. Besides, an evaluation
prototype system MalDetector is developed to confirm the
effectiveness of this approach. It took 1260 malware and
10k promote apps as “malevolent” and “benign” datasets
respectively. Adequate experiments on these datasets show
that MalDetector iS more accurate and with lower false
positive rate compared with other traditional methods.

GarimaBajwaet al. in (2015) [4] the intention of an
Android application, determined by the source code
analysis is used to identify potential maliciousness in that
application (app). Similarly, it is possible to analyze the
unintentional behaviors of an app to identify and reduce
the window of vulnerabilities. Unintentional behaviors of
an app can be any developmental loopholes like as
software bugs disregarded by a developer or introduced by
an adversary intentionally. FindBugsTMand Android Lint
are a couple of tools that can detect such bugs easily. A
software bug can cause many security vulnerabilities
(known or unknown) and vice-versa, thus, creating a
many-to-many mapping. In this approach,construct a
matrix of mapping between the bugs and the potential
vulnerabilities. A software bug detection tool is used to
identify a list of bugs and create an empirical list of the
vulnerabilities in an app. The many-to-many mapping
matrix is obtained by two approaches - sternness mapping
and probability mapping. These mappings can be used as
tools to measure the unknown vulnerabilities and their
strength.

Mario Franket al. in (2012) [5] Android and Facebook
provide third-party applications with access to users'
privatedata and the capability to perform potentially
sensitive operations (e.g., post to a user'swall or place
phone calls). As a safety measure, these platforms restrict
applications'privileges with permission systems: users
must endorse the permissions requested byapplications
before the applications can make privacy- or security-
relevant APl calls.However, current studies have shown
that users often do not understand permission requestsand
lack a notion of typicality of requests. As a _rst step
towards simplifyingpermission systems, itcluster a corpus
of 188,389 Android applications and 27,029
Facebookapplications to and patterns in permission
requests. Using a method for Booleanmatrix factorization
for ending overlapping clusters, that Facebook
permissionrequests follow a clear structure that exhibits
high stability when atted with only _veclusters, whereas

Android applications demonstrate more complex
permission requests, also _nd that low-reputation
applications a lot deviate from the permission

requestpatterns that identified for high-reputation
applications signifying that permissionrequest patterns are
indicative for user satisfaction or application quality.

ParvezFaruki et al. in (2013) [6] Popularity of Android
smart phone has led to exponential increase oOf
sophisticated malware coercion prompting the academia
research, security researchers and Anti-Virus (AV)
industry to look for smart finding methods to protect user
against malware app threat. Statistical signature methods
play a vital role to end the malware authors spreading
malicious content during apps. Statistical signature is
robust against repackaged and code obfuscated malware,
accepted app obfuscation techniques. DroidOLytics is a
syntactic approach that finds regions of statistical likeness
with known malware to detect variants of known malware
families.

Wook Shin et al. in (2010) [7] this paper suggests a formal
model of the Androidpermission scheme. It describes the
scheme specifyingentities and relationships, and supplies a
state-based stylewhich includes the behavior specification
of permission authorizationand the interactions between
application components, also shown how we can logically
confirm the securityof the specified system. Utilizing a
theorem prover, it canverify security with given security
requirements based onmechanically checked proofs. The
projected model can beused as a reference model when the
scheme is implementedin a different embedded platform,
or when extend thecurrent scheme with additional
constraints or elements, demonstrate the use of the
verifiable specification throughfinding a sanctuary
vulnerability in the Android system. To thisknowledge,
this is the first formalization of the permissionscheme
enforced by the Android structure.

Hamid Bagheriet al. in (2015) [8] Android is the most
popular platform for mobile devices. It facilitates division
of data and services among applicationsusing a rich inter-
app communication system. While access to resources can
be restricted by the Android permission system, enforcing
permissions is not sufficient to prevent safety violations, as
permissions may be mismanaged, intentionally
orunintentionally. Android’s enforcement of the
permissions is at the stage of individual apps, allowing
multiple malicious appsto collude and combine their
permissions or to trick susceptible apps to perform events
on their behalf that are beyond theirindividual privileges.
Present COVERT, a device for compositional analysis of
Android inter-app vulnerabilities. COVERT’s analysis is
modular to permit incremental analysis of applications as
they are installed, efficient, and removed. It statically
analyzes the reverse engineered source code of every
individual app, and extracts relevant safety specificationsin
a format suitable for formal verification. Given a gathering

74

“JITE

VOLUME 20, NUMBER 02, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE) ISSN: 2395-2946

of specifications extracted in this way, a formal analysis
engine(e.g., model checker) is then used to confirm
whether it is safe for a grouping of applications—holding
certain permissionsand potentially interacting with apiece
other—to be installed together. This experience with using
COVERT to examine over 500real-world apps
corroborates its capacity to find inter-app vulnerabilities in
bundles of some of the most popular apps on the market.

3. PROPOSED WORK
3.1 Problem Formulation

Reverse Engineering is a process with the aid of which we
can discover and understand the absolute working of an
application by learning its operation, structure and
functions. In this project the tools we use for reverse
engineering are, ApkTool, DexManager, Dex2Jar, JD-GUI
and Android SDK. The application, in its pre-compiled
binary layout, is distributed and hence it is not possible to
directly debug the source code. However, there are
disassemblers that transfer or reverse the DalvikBytecode
into readable format. The binaries for Dalvik Virtual
Machines are in the .dex format. Backsmali is a
disassembler that is used for .dex files in Dalvik.

3.2 Proposed Work

Reverse Engineering is a method of analyzing an existing
code or piece of software in order to scrutinize the
software for any vulnerability or any errors. Reverse
engineering is the ability to generate the source code from
an executable. This technique iS used to scrutinize the
functioning of a program or to evade safety mechanisms,
etc. Reverse engineering can therefore be stated as a
method or process of altering a program in order to make it
behave in a manner that the reverse engineer requests.
Objectives are:

1. Analyzing the possible functionalities of an
application using Reverse engineering process.

2. To develop two methods to analyze the apk code.
The first method involves the utilization of
APKTOOL and an editor such as Notepad++. The
second method is performed using tools Dex2Jar
and JD-GUI .

3. Setting permissions of an app earlier than they are
downloaded. This will results in not completely
disabling the app, but will allow users safeguard
their privacy and keeps apps from accessing any
more user data.

4. RESULTS AND ANALYSIS

KHE)r | » Computer » Local Disk (0) » Android » =4 | 5ec)

Sharewith v Bum Mewfolder ~ 0 9

AdvoncedApkToo
Dex Manager
jd-gui

Figure 4.1 Tools used

Figure 4.1 shows the folder containing AdvancedApkTool,
Dex Manager and Jd-gui

1. ApkTool
r 3
@ Administrator: Advanced ApkTool S | B i
= Advanced ApkTool v4.1.8 =
= By BDFreak =
1 - Install Framework
2 — Deconpile Files
3 - Reconpile Files
4 - Sign Files
5 - Zipalign Files
6 - Wipe Folders
? - Hore Menu
i x - Exit |
Make A Choice And Press ENIER:

Figure 4.2 ApkTool options

Figure 4.2 shows various options available with Advanced
ApkTool.

5 | Administrator: Decompiling "DesiCalendar.apk” S| B |

Decompiling =

B81-88-2016 8:22:21 .45

DesiCalendar.apk
Started =

: Using Apktool 2_A_@-RC3 on DesiCalendar.apk
: Loading resource table..
: Decoding Hndruldﬁan1fest xml with resources.
: Loading resource table from file: D: \ﬂndro].d\ﬁduancedﬂka
nl\l BDFreak“Frameworks-1 . apk
Regular manifest package.
: Decoding file—resources.
: Decoding values /% ¥MLs...
: Baksmaling classes_dex...
: Copying assets and libs...
: Copwing unknown files...
: Gopying original files...

D

Complete = Yes
Success - Yes

Ended : B1-88-2616 8:22:39_.33

Figure 4.3 Decompiling Apk

75

0 IJITE

VOLUME 20, NUMBER 02, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

Figure 4.3 shows the decompiling the apk file, Decoding
AndroidManifest.xml file, Baksmaling classes.dex file.

Gl

Organize ¥

« Android » AdvancedApkTool » 3-Out » DesiCalendarapk »

Includeinibrary » Sharewith » Sideshow Bum Newfalder s+ O ®

;::':::;:! 2 | | j
= AR

assets original res smali AndroidManifest

4 Libraries L
4 Documents
& Music =,
= Pictures
B videos apktool

% Computer
& Local Disk ()
. Local Disk (D:)
1 mnald Dol FE =

+ 6 items

Figure 4.4 Folder containing decompiled apk

Figure 4.4 shows the folder where decompiled apk is
extracted. Now you can edit the AndroidManifest.xml and
smali folder.

B8 - et S il

[Be gt sewch Vew Proec ud ook Confgwe Wncow Kb 0 _ax|
O F A bRl] cwmw - @ / 8.
S L And!vldl‘hniﬁstmlll 15 %

Workspace Delaut” D Proects :
bl tenusgory andcald menc==android. KRuent,caceaorT

(=]
@) ArdrodMandest

<activity
<activity
<aceiviey
<activity
<activity
<activity
Japplicationy

iR Data View [HPackage View e

Buid Output. B x

Package View 55| 16
Package\lew not avalsble 7

Figure 4.5 Revoking Internet permission from apk

= Aidvanced ApkTool wv4.1.8 =
= By BDFreak =

Recompile File:

1 - "DesiCalendar.apk"

I x — Go To Main Menu !

ake A Choice And Press ENTER:

Figure 4.6 Recompile apk

Figure 4.5 shows contents 0of AndroidManifest.xml opened
in Notepad. User can edit this file to revoke a particular
permission from apk. The AndroidManifest.xml file
contains all the permissions and metadata linked to the
security enforcement policy. The tag <Permission>

indicates the components that can access it and <Intent-
Filters> tag is used to specify the intents that can be
resolved.

Figure 4.6 shows ApkTool recompiling the apk file.

,

Recompiling =

DesiCalendar.apk

Started : B1-B8—2H16 B:48A:42_35

= Using Apktool 2.A.8-RC3 on DesiCalendar. apk
= Smaling smali folder into classes_dex

z Building resources.

: Building apk file...

: Preparing apk file...

= Zipaligning apk flle...

L

Complete = Yes
Success : Yes

Ended = 81082016 8:41:83_.83

Figure 4.7 Recompiling Apk

Figure 4.7 shows recompiling the apk file
folder,

building
classes.dex from smali building apk file,

Zipaligining apk file.

« Local Disk (D) » Android » AdvancedApkTool » 4-Done -

Gl

Organize = Include i library =

Shacewith » Playall Bum Newfolder

7 Favorites

& Downloads
L Recent Places.
B Desktop

Ak Tt DesiCalendar.apk
4 Libraries

¥ Documents

o Music

i Pictures

B videos

% Computer
& Local Disk (C)

Figure 4.8 Folder containing recompiled apk

Figure 4.8 shows the folder containing the new apk file
which is now with restricted permissions and can be
installed on Android phone.

D

He Commish Tooh feeite Opan Vg

ANREHNWO R I

Add Do Tet View Dee fid Wad o | Ve i

-

B & CoCanndiraps - 20 e, unpacied ize 11447770 bytes -
Wirs & Gan Pakad Tyge i R

L]

b ety = VMG IR

L itaira beian e b

hm Fabdit

W Andredhlande.. 154 LI M Sourcr Fle. AL

[e e I LM Flede R0

(B msurcenanc MR MR e 1B
L Total3ebders and 4 JEL536 bytes i 3 ke

Figure 4.9 Winrar to open apk

76

;:;' I]'ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE) ISSN: 2395-2946
" VOLUME 20, NUMBER 02, 2016

Figure 4.9 shows the contents of apk file in winrar. Here

Figure 4.12 shows the folder containing source code
classes.dex file is required.

extracted by Dex Manager. Make changes in source code
and save all files in the same folder.

= Local Disk () » Android » DexManager » DesiCalendar

w | 43} Search Desicotendor

- Dex Manager v1.1 By Jasi2169/Team URET [=A=1iFS]
Organize v+ Includeinlibrary » Sharewith v Sideshow Bum Newfolder 2 0 @ o —
B | IL@@{?’ I ANAGE
& Downloads
1L Recent Places S Read Me
B How To Use :
L. Anisha Jmit 5

classesdex

L -Drag And Drop "classes.dex" From Apk Or Jar

o
To DexManager Root Directory By Opening The
A Libraries Apk Or JarIn WinRAR Or 7Zip.

(Decomeie |

4 Documents - Option "Decompile” To Decompile The Dex File
) Music Which Gets Decompile In "Source" Folder.

= Pictures - Now Modify The C‘[Dex Manager B]

: | - Option "Compile”

B videos I "New_classes.dex

S— Compiled...

18 Computer Ermor Box -
&, Local Disk () If ¥ou Did Mot Found "Mew_classes.dex” Check Error Box...
i Local Disk (D)

1 sl Mk (5
=

| [Team URET

Figure 4.10 Extracting the classes.dex file from apk

Figure 4.13 Compile apk
Figure 4.10 show the folder containing classes.dex file.

Now we will extract source code from the dex file. Figure 4.13 shows the compilation of source code to

generate the New_classes.dex file.

Dex Manager v1.1 By Jasi2169/Team URET (=] @) X]
=\ [
D .f = g | | v Computer » Local Disk (D) + Android » DexManager » {44 | Search Dex Manager
Organize ~ Include in hibrary « Share with « Bum New foider s~ 0 @ |
\ How To Use :- Read Me| & Loow©) + e ' f
= s Local Disk (D7)
. Binanes folder
Local Disk (E) =
- Drag And Drop "classes.dex" From Apk Or Jar @ ._.b Kor Bicnl| S Desicendy i
To DexManager Root Directory By Opening The B Apple ’ 5:"“5 :'f(':'l“' s
Apk 0“[v) FOLDRLOCK ;;::;H Ve S’; :E
= Dex Manager L L} 767
Option n 'J:"’"‘w""’"' & Dex Mariager Apphcition 133208
Which G e M:'“) Hew_classes dex S/1/M6903AM DEXFile 39 KE
:go‘gotq? Decompiled... : Music
"Npew cl : - b MyData
= If You Did Net Found Decompiled Source Then Check Error Box... J orade
) Pictures
Error B¢) Softwares
Niraj's iPhone
7 items
| Twitter l
Google+
Team URET

Figure 4.14 New_classes.dex generated after compile

Figure 4.11 Decompiled source code

Figure 4.14 shows classes.dex and New_classes.dex file.
Remove classes.dex and rename New_classes.dex as

B —— — classes.dex. Copy this classes.dex to apk.
Organize T Open * Bum Newfolder =~ 0 @

B Dounicads : FTerm—— T
B RecentFlaces = b b, L 5 A 3 3 DesiCalendarapk - WnRAR (ecabiation

B Desttop a 7 n 7 7 Fle Commands Teoks Fawortes Optioes Help

s - . - FABLHNRD R 4 ¥

¥

& Libases ActionBarDrawer ActionBarDrawer ActionBarDrawer | ActionBaDrawer | ActionBarDrawes Sl e A o i o

3 o | TogglesL) Io i i T i B o DesiCatendurapc . ZP archive, unpacied sive 11436,602 bytes -

29 89 ——

o Music ol plBase pIHC pliellybeanhR2 fume ¢ Sie Packed Type Modiied R

= Pictures | oo fotder

B videos % % %, %, 3 L ety Folder LB

7‘] /| y /| /| L METAINF Felder 0 Tr LER R

e I | 7 j 7 7 Jires Falder Y63 .
e nmPu": B androidMiede.. 3968 1168 XML Source Fle VRAMEIR .. ARSCHC

&L Local Disk (€ e z T Bumﬁ.du AP LIS Fledes BUMGH0. SsE

. Local Disk (0) Toogle ToggleHoneycs P resourcesanc WiEE NI Feanc VRS

. Lecal Disk () Provider wable mSSetindicatorl

U Nirgjs iPhone = i =

| Adt goleSActi Date modified: 8/1/2016 8:56 AM Date created: 8/1/2016 8555 AM
';"]‘ SMALI File Size 269 KB

Figure 4.12 Folder containing source code of apk

594 e W1y e Tt ks e L5078t e

Figure 4.15 Modified apk

77

“JITE

VOLUME 20, NUMBER 02, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

ISSN: 2395-2946

Figure 4.15 shows the Modified apk to which now new
classes.dex file has been added.

@\ J®| |+ Computer » LocalDisk (D:) » Android » jd-gui = | Ep
Organize ~ Open Bum Newfoldes - O @
& Downloads
Recent Places e
classes.dex
B Deskiop ; =
jd-gui
Anisha Jmit
Libraries
¢ Documents
& Music
il Pictures
H videos
18 Computer
i Local Disk (C:)
| s Lol Disk (D)
4 Local Disk (E]
B Ninaj's iPhone
|

Figure 4.16 jd-gui folder

Figure 4.16 shows the folder containing jd-gui tool and
classes.dex file from which source code is to be extracted.

(%3 Java Decompiler

File Edit Mavigate Search Help
=3 |

Figure 4.17 Java Decompiler

Figure 4.17 shows various options of Java Decompiler.

B Administrator. C:\Windows\system32\cmd exe

[ESEy==)

Figure 4.18 Convert classes.dex to jar

Figure 4.18 shows the conversion of classes.dex file to jar.
This jar file can currently be opened in jd-gui.

(%3 Java Decompiler - classes-dex2jar.jar =RACS X"

File Edit Mavigate Search Help
EA-2 A

classes-dex2jarjar -

&~} annotation »
- [J] AnimRes
: ~|J] AnimatorRes

-|J] AnyRes

|J] ArrayRes
-|J] AttrRes

-[¥] BoolRes
|J] CelorRes

~[J] DrawableRes
|J] FractionRes
-|4] IdRes

[3] IntDef

~|J] IntegerRes
-|4] InterpolatorRes

x
.
@
.
.
+|J_| DimenRes
o
.
:
i
.
:
=

11 1avotRes

Figure 4.19 Source code of apk

Figure 4.19 shows the java source code of apk which can
now be edited.

5. CONCLUSION AND FUTURE SCOPE

From the analysis made in above, we can confirm that
special attention needs to be provided for the permissions
that an application requests access to. The user must
decide if these permissions are really required by the
application or not. Just as there are hackers/attackers
releasing malwares for PCs, there are attackers who are
now targeting smart phones. The main reason for this is
that mobile security is still in its initial stages and lack of
user alertness regarding how these devices can be
compromised if they are not careful enough. In this project
the tools we use for reverse engineering are, ApkTool,
DexManager, Dex2Jar, JD-GUI.The several malwares that
exist in the Android platform are a ground of concern for
both the users as well as Google. Existing work can be
extended to further analyze the malwares, their effects and
how they can be eradicated in order to provide malware
free applications for users.

REFERENCES

[1] Quang Do, Ben Martini, Kim-Kwang, Raymond
ChooEnhancing,“User Privacy on Android Mobile Devices via
Permissions Removald”,2014 47th Hawaii International
Conference on System Science.

[2] Andr’eEgners, Ulrike Meyer, Bj ornMarschollek,” Messing
with Android’s Permission Model”, 978-0-7695-4745-9/12
$26.00 © 2012 IEEEDOI 10.1109/TrustCom.2012.203.

[3] ChenkaiGuo, Jing Xu, Lei Liu and SihanXu,”MalDetector-
Using Permission Combinations toEvaluate Malicious Features
of Android App”, 978-1-4799 /15/$31.00 ©201_ IEEE.

[4] GarimaBajwa, Mohamed Fazeen, Ram Dantu and
SonalTanpure,”Unintentional Bugs to Vulnerability Mapping in

78

"-::.I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (WITE)

VOLUME 20, NUMBER 02, 2016

ISSN: 2395-2946

Android Applications”, 978-1-4799-9889-0/15/$31.00 ©2015
IEEE.

[5] Mario Frank, Ben Dong, Adrienne Porter Felt, Dawn
Song,”Mining Permission Request Patterns from Android
andFacebook Applications (extended author
version)”,arXiv:1210.2429v1 [cs.CR] 80ct 2012.

[6] ParvezFaruki, Vijay Laxmi, Vijay Ganmoor, M.S. Gaur,
AmmarBharmal,”DroidOLytics : Robust Feature Signature for
Repackaged Android apps on Official

and Third party android markets”,978-0-7695-5127-2/13 $31.00
© 2013 IEEEDOI 10.1109/ADCONS.2013.48.

[7] Wook Shin, ShinsakuKiyomoto, Kazuhide Fukushima, and
Toshiaki Tanaka,” A Formal Model to Analyze the Permission
Authorization and Enforcement in theAndroid Framework”,978-
0-7695-4211-9/10 $26.00 © 2010 IEEE
DOI110.1109/SocialCom.2010.140.

[8] Hamid Bagheri, AlirezaSadeghi, Joshua Garcia and Sam
Malek, "COVERT: Compositional Analysis of AndroidInter-App
Permission Leakage”, DOl 10.1109/TSE.2015.2419611, IEEE
Transactions on Software Engineering.

79

	INTRODUCTION
	LITERATURE SURVEY
	PROPOSED WORK
	Problеm Formulation
	Proposеd Work

	RESULTS AND ANALYSIS
	CONCLUSION AND FUTURE SCOPE
	REFERENCES

