II-'.:';:J.I]ITE

VOLUME 20, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Parallel Web Content Mining in Multicore System
using Apriori Algorithm

Narendra Parmar !, Dr. Vineet Richhariya?, Jay Prakash Maurya®

123 Computer Science & Engineering Department Lakshmi Narayan College of Technology, Bhopal, India

Abstract— The web content mining is a useful technique for
discovering frequently and regularly occurring keywords in web
data. Various algorithms have been proposed 10 speed up the
web mining performance on the single and multicore systems.
Unfortunately, when the volume of web dataset size is large,
then both the computational cost and memory use can be
extremely expensive. In this paper, we parallelized the Apriori
algorithm using message-passing interface (MPI) on the
multicore machines. We divided the large volume of database
into the total number of CPU cores, and applied the integrated
potential of all the CPU cores, to accomplish the maximum
throughput. Our experimental result presents that the parallel
execution of web content mining using Apriori algorithm
achieves high speed up ratio as compared t0 serial execution.
Finally, this paper is concluded with many future
implementation and analysis.

Keywords—\Web Content Mining,
Algorithm, Parallel Processing.

Data Mining, Apriori

1. INTRODUCTION

One definition of web content mining is the deep
understanding of variation in World Wide Web data sets.
At its simplest, web content mining is concerned with
finding and extracting the valuable information and the
variations in complex World Wide Web [1]. At its main
complexity, it is concerned with discovery of the most
influential or most useful theoretical explanations for
experimental variations.

For two reasons, web content mining is the essential
application of data mining that parallel computing has
been applying. First,analyzing deviation appears to be
algorithmically difficult and hence it require levels of
computing influence that only parallel computers can
provide in a timely manner [2]. Second, the large web
content data sets involved are huge and rapidly increasing
larger and parallel computers are used to handle these large
volumes efficiently and effectively, although some web
content and data mining limitations are already demanding
and challenging their limits [2][3].

This paper aims at presenting a large amount of broader
view of the research of parallel web content mining, by
discussing the parallelization using Apriori data mining
algorithms [4]. Morespecifically, the parallelization of web

content mining algorithms are discussed in the following
two essential techniques first is Apriori algorithm and
second one is MPIl (Message passing Interface) [5].A
typical web content mining application starts from the web
content data set describing interactions between individual
units and a central multifaceted unit[6]. The individuals
unit are end users or customers and the central unit is a
sales organization. The fundamental requirement is that the
individual units revealvariationsand the central unit
measures those variations. The web content miner requires
to understand the deeper processes that generate those
variation, for better market products in the primary case, to
enhance production in the second case, and to discover
new patterns about the web supported market in the third
case [7]. The web content mining effectively enhances the
marketing and business strategies to higher level. So there
is a critical requirements to improve the existing web
content mining techniques and methods [7][8].

This paper is organized as follows: Section 2 reviews the
distinction between data parallelism and control
parallelism. Section 3 discusses literature review for
parallelizing web content mining. Section 4 discusses
proposed method to overcome the limitations of existing
work. Section 5 discusses the result of proposed work.
Section 6 concludes with some future research directions.

2. DATAPARALLELISM VS CONTROL PARALLELISM

This Section reviews the distinction between data
parallelism and control parallelism, which is crucial for an
understanding of the mining process. In essence, data
parallelism refers to the execution of the same operation,
instruction on multiple large data subsets at the same time
as illustrated in Figure 1 This is in contrast to control
parallelism, or operation parallelism, which refers to the
concurrent execution of multiple operations or instructions,
as illustrated in Figure 2. Data parallelism has three main
advantages over control parallelism:

(i). First, data parallelism gives itself to a type of automatic
parallelization. The control flow of a data parallel program
is fundamentally the same as the control flow of a
sequential program, only the entrance to the data is
parallelized. Hence, many previously written sequential

54

. IJITE

VOLUME 20, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

code can be re-used in a data-parallel fashion [9]. This
simplifies programming and leads to a development time
significantly smaller than the one associated with control-
parallel programming.

Data subset 1.1

. ® .
Data subset I.N

Figure 1: Data Parallelism (one operation executed on N
processors, via data partitioning).

¥ ¥

Dara set 1 Data set N

Figure 2: Control parallelism (N operations executed on N
processors).

(ii). Second, data parallelism has a higher degree of
machine architecture independence, as compared to control
parallelism. However, the control flow of a data-parallel
algorithm is still sequential only data handling is
parallelized, there is no need to modify the control flow of
the algorithm in the underlying parallel architecture [9].
This is in dissimilar with control parallelism, where this
kind of modification is one of the major challenges of
parallel programming [9]. Note that the problem of
machine architecture. Dependence is not completely
removed in data parallelism. This limitation is simply
pushed down to a lower layer of software, hidden from the
applications programmer, which leads to an enhancement
in programmer productivity [9].

(iif). Third, intuitively data parallelism has better
scalability for huge volume of databases than control
parallelism [9]. In most database applications of data
mining, the amount of data can increase arbitrarily faster,
while the number of lines of code typically increases at a
much slower rate. Simply, the more data is available, the
more the opportunity to exploit data parallelism.

3. LITERATURE REVIEW

In this section, the existing tools, techniques and methods
for parallelization of web content mining are analyzed and
reviewed. In web content mining, web content is a form of
data in which the attributes of data are defined in high
dimensional attributes. The existing techniques which are
basically applied for web content mining are follows:

A. The Count Distribution Algorithm

Count Distribution, is a parallel Apriori-based algorithm
which is used to mine for frequent patterns. Each processor
computes its local candidate item set, along with their
support count, by performing a single pass over its local
data partition at that time. Information is maintained in a
hash-table, which is identical for each processor. This
process is accomplished by running a sequential Apriori on
each processor. All local counts are then accumulated and
summed together to form a global support count using a
global reduction function [10]. Global reduction consists
of two other operations. One of the operations is referred
to as ‘Reduce Scatter’, which is responsible for obtaining
local support count communication from a processor, and
the other operation is called *All Gather’ operation, which
is responsible for global support count communication.
Count Distribution seems to scale linearly to the number of
records of the dataset as all computations to find support
counts can be done locally at each processor having minor
communication only at the end for accumulating the
counts [10][11]. However, in case the hash-table structure
cannot fit into the main memory of each processor, it must
be partitioned and support counts are computed by
performing multiple scans of the dataset, one scan for each
partition of the hash-table. Thus, the algorithm is efficient
only if candidate set generated leads to a hash-table with
reasonable size relatively to the size of main memory. It is
important to notice that the number of candidates becomes
larger as the number of distinct items in the dataset
increases or as the minimum threshold decreases [11]. In
general, Count Distribution works better for small number
of distinct items and high levels of minimum thresholds.

B. The Data Distribution Algorithm

The Count Distribution algorithm is attractive in the sense
that no data movement is performed. All the counts are

55

. IJITE

VOLUME 20, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

computed locally to each processor thus every processor
can operate asynchronously on its own data. However, this
limits the ability of taking advantage of non-local memory
parallel machines provide. The Data Distribution algorithm
solves this problem by allowing each processor to compute
the support counts of its locally stored subset of the
candidate item sets for all the transactions in the database
[12].

In order for this to become feasible, the All-to-All
broadcast is used, where each processor must scan its own
partition of the data as well as other partitioned data
located at remote processors. This results in every
processor having to broadcast their data to all other
participating processors as well as receive data from them
[12]. Although this will solve the problem that Count
Distribution carries with it, there are still negative effects
as far as the burden placed in communication operations as
there is a high communication overhead created due to
data movement [12]. Furthermore, such a communication
scheme as this one causes the processors to become idle
while waiting for data to be broadcasted resulting in
wasting time that could have been manipulated for useful
processing.

C. The Candidate Distribution Algorithm

Both Count and Data distribution algorithms carry the
limitation that there is some synchronization involved.
Although in Count Distribution, each processor can
compute its own candidates asynchronously, some
synchronization is required when global counts are about
to be summed. In case the workload is not perfectly
balanced, some processors may have to remain idle until
others are finished. Similarly, in Data Distribution,
synchronization is needed when data is broadcasted around
the processors [13]. Furthermore, since any database
transaction could support any candidate item set, each
transaction must be compared against the entire candidate
set. For this reason, Count Distribution needs to duplicate
the dataset in every processor and Data Distribution needs
to broadcast all of the transactions.

Candidate Distribution [13] combines the ideas used in
both previous algorithms in order to overcome the
problems associated with idle time, communication, and
synchronization issues. This is achieved by duplicating the
data on every processor’s local memory as well as
partitioning the candidate set across processors. In this way
every processor can proceed independently, using its part
of candidates on its local data. There is no need to
exchange data or counts using this algorithm. The only
communication required is when pruning a local candidate
set during the phase of pruning in candidate generation
[13]. However, there is no need for synchronization at this

stage thus no processor has to remain idle until pruning
updates from other processors arrive.

D. Parallel Multipass with Inverted Hashing and
Pruning (PMIHP) Algorithm

The new Parallel Multipass with Inverted Hashing and
Pruning (PMIHP) algorithm is a parallel version of the
sequential Multipass with Inverted Hashing and Pruning
(MIHP) algorithm. The MIHP algorithm is based on the
Multipass approach [14] and the Inverted Hashing and
Pruning (IHP) [14] that it is proposed. In PMIHP, the
Multipass approach reduces the required memory space at
each processor by partitioning the frequent items and
processing each partition separately. Thus, the number of
candidate itemsets to be processed is limited at each
instance. The Inverted Hashing and Pruning is used to
prune the local and global candidate itemsets at each
processing node, and it also allows each processing node
to determine the other peer processing nodes to poll in
order to collect the local support counts of each global
candidate itemset [14].

The Multipass algorithm partitions the frequent items,
and thus partitions the candidate item-sets. The partition
size is selected to be small enough to fit in the available
memory Of the processing node. Each partition is then
processed separately. Each partition of items contains a
fraction of the set of all items in the database, so that the
memory space required for counting the occurrences of the
sets of items within a partition will be much less than the
case of counting the occurrences of the sets of all the items
in the database.

4, PROPOSED METHOD

The previous existing algorithm “Multipass with Inverted
Hashing and Pruning (MIHP)” and “Parallel Multipass
with Inverted Hashing and Pruning (PMIHP)” works on
data parallelization. These algorithms work as application
programming on operating system. The solution is the
requirement oOf task parallelization instead of data
parallelization. Task parallelization is more efficient than
data parallelization in context of time complexity. Also
there is the requirement of system programming instead of
application programming. The proposed method to
overcome the limitations of previous method is combining
Apriori Algorithm with MPI (Message Passing Interface).

Apriori Algorithm:

Apriori uses breadth-first search and a Hash tree
structure to count candidate item sets efficiently. It
generates candidate item sets of length k from item sets of
length k — 1. Then it prunes the candidates which have an

56

. IJITE

VOLUME 20, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

infrequent sub pattern. According to the downward closure
lemma, the candidate set contains all frequent k-length
item sets. After that, it scans the transaction database to
determine frequent item sets among the candidates. The
pseudo code for the algorithm is given below for a
transaction database T, and a support threshold of €. Usual
set theoretic notation is employed, though note that T is a
multiset. Cy is the candidate set for level k. At each step,
the algorithm is assumed to generate the candidate sets
from the large item sets of the preceding level, heeding the
downward closure lemma. count[c] accesses a field of the
data structure that represents candidate set c, which is
initially assumed to be zero. Many details are omitted
below, usually the most important part of the
implementation is the data structure used for storing the
candidate sets, and counting their frequencies. The Apriori
algorithm is summarized as:

Apriori (T, €)
L, « {large 1 — itemsets}
k2
whileL,_, = @
C, « {au{b}|a€L,_1A\b¢&a}
—{c|{s|sccA|s|=k—-1}
Z L1}
fortransactionst € T
C, «{c|ceC,N\cct}
forcandidatesc € C,
count[c] « count[c] + 1
L, « {c| c € CyAcount[c] = €}
k<K+1

return U L,
k

Message Passing Interface (MPI):

Message Passing Interface (MPI) is a message passing
library standard based designed by a group of researchers
from academia. It is mainly used for task parallelization
into CPU cores. It open source, standard, core of library
routines useful in parallel computing for C, C++ & Fortran
program. It is introduced as a header file # include "mpi.h”
in C programming language. Programming process have
multiple threads sharing a single address space. Message
Passing Interface (MPI) is for communication among
processes, Which have separate address spaces. MPI uses
MIMD parallelism.

5. RESULT
Serial execution V'S parallel execution:
Consideration of database (size=5577)

here we have taken a database of size 5577 transaction and
perform mining of item serial as well as parallel. The

corresponding result is shown in table. We analyze it
through graph.

Table between execution of time and threshold in serial
and parallel algorithm

Table 1: Execution time in serial and parallel algorithm

Serial Execution Parallel
Database-(5577) ¢ eeutio Execution
(seconds)
(seconds)
Threshold--.10 0.104 0.048
Threshold--.15 0.06 0.04
Threshold--.20 0.044 0.038

Scalability Evaluation:

Serial run-time is indicated using T

Parallel run-time using T .

= Speed Up:

Speed-up, S, is defined as “the ratio of the serial run-time
of the best sequential algorithm for solving a problem to

the time taken by the parallel algorithm to solve the same
problem on p processors:

Ts
s=-=2
TP

Graph Corresponding to Table 1:

Graph between Execution
Time & Threshold

0.15

0.1
0.05 I
0 []

Threshold- .10 Threshold-.15 Threshold- .20

M Serial Parallel

Figure 3: Graph between execution time and threshold

57

. IJITE

VOLUME 20, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

= FEfficiency:
Efficiency E, is “a measure of the fraction of time for

which a processor usefully employed”; it is defined as “the
ratio of speed-up to the number of processors”.

g5
P

Result corresponding to Speed up and Efficiency

Table 2 : Table for speed up and efficiency

Database=55 | Threshold=. | Threshold=. | Threshold
77 10 15 =20
Speed up 2.16 15 1.15
Efficiency 0.72 0.5 0.38

Graph corresponing to table 2:

Execution Time for
MIHP, PMIHP & Apriori with
MPI

0.05 I
0
Threshold- 0.10 Threshold- 0.15 Threshold- 0.20

m MIHP

Figure 4: Graph of Execution Time for MIHP, PMIHP &
Apriori with MPI

For lower threshold values, the proposed method presents
high efficiency, however, for higher threshold values, it
presents lower efficiency.

6. CONCLUSION

In this paper, the web contents mining frequent item
through MPI in transactional database was performed for
making difference between sequential and parallel
algorithm, the time of making APRIORI Tree was noted
for both algorithms on different threshold. After compare
the result of different metric with idle parallel system
metric, conclusion is that proposed method and technique
works good in parallel environment. MPI is used here for
message communication among processes and multiple
threads to achieve the true task parallelization. This
method and technique helps MPI to communicate in
parallel environment.

In the paper, processing times with parallel computing and
that with single processor computing have been compared.
The future extensions to this paper include some updates
such as using optimization to make the database efficient.
The database here comprised of numeric values. The MPI
can be integrated with fp-growth algorithm in future, also
can be applied with Big Data.

REFERENCES

[1]. B.Santhosh Kumar and K.V.Rukmani, “Implementation of
Web Usage Mining Using Apriori and FP Growth
Algorithms, International Journal of Advanced Networking
and Applications”, Ketti, The Nilgiris, Vol 01, pp.400- 404,
2010.

[2]. J. Pei et al. H-Mine. “Hyper-structure mining of frequent
patterns in large databases” In proceeding of the IEEE
Conference on Data Mining, November 2001.

[3]. Clemens Koltringer, Astrid Dickinger, “Analyzing
destination branding and image from online sources: A web
content mining approach”, ournal of Business Research,
Elsevier, Vol. 68, Issue 9, September 2015, pp. 1836-1843.

[4]. José Antonio Iglesias, Alexandra Tiemblo, Agapito
Ledezma, Araceli Sanchis, “Web news mining in an
evolving framework”, nformation Fusion, Elsevier, Vol. 28,
March 2016, pp. 90-98.

[5]. Petar Ristoski, Heiko Paulheim, “Semantic Web in data
mining and knowledge discovery: A comprehensive survey”,
Web Semantics: Science, Services and Agents on the World
Wide Web, Vol. 36, January 2016, pp. 1-22.

[6]. Amit Dutta; Sudipta Paria; Tanmoy Golui; Dipak K. Kole,
“Structural analysis and regular expressions based noise
elimination from web pages for web content mining”,
International Conference on Advances in Computing,
Communications and Informatics (ICACCI, 2014, pp. 1445
—1451.

[7]. Unil Yun, Gangin Lee, “Incremental mining of weighted
maximal frequent itemsets from dynamic databases”, Expert
Systems with Applications, Elsevier, Vol. 54, 15 July 2016,
pp. 304-327.

[8]. Mingxing Wu, Liya Wang, Ming Li, Huijun Long, “An
approach of product usability evaluation based on Web
mining in feature fatigue analysis”, Computers & Industrial
Engineering, Elsevier, Vol. 75, September 2014, pp. 230-
238.

[9]. Cheng Wang; Ying Liu; Liheng Jian; Peng Zhang, “A
Utility-Based Web Content Sensitivity Mining Approach”,
IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 2008. WI-
IAT '08. Vol. 3, pp. 428 — 431.

[10]. Tarique Anwar; Muhammad Abulaish; Khaled Alghathbar,

“Web content mining for alias identification: A first step
towards suspect tracking”, IEEE International Conference
on Intelligence and Security Informatics (1SI), 2011, pp. 195
-197.

58

ya®
%
v

I]ITE INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

VOLUME 20, NUMBER 01, 2016

ISSN: 2395-2946

[11].

[12].

[13].

[14].

R. Etemadi; N. Moghaddam, “An approach in web content
mining for clustering web pages”, Fifth IEEE International
Conference on Digital Information Management (ICDIM),
2010, pp. 279 - 284.

YoonKyung Cha, Craig A. Stow, “Mining web-based data
to assess public response to environmental events”,
Environmental Pollution, Elsevier, Vol. 198, March 2015,
pp. 97-99.

Petar Ristoski, Christian Bizer, Heiko Paulheim, “Mining
the Web of Linked Data with RapidMiner”, Web Semantics:
Science, Services and Agents on the World Wide Web,
Elsevier, Vol. 35, Part 3, December 2015, pp. 142-151.

D.A. Adeniyi, Z. Wei, Y. Yongquan, “Automated web
usage data mining and recommendation system using K-
Nearest Neighbor (KNN) classification method”, Applied
Computing and Informatics, Elsevier, Vol. 12, Issue 1,
January 2016, Pages 90-108.Jo R. Etemadi; N. Moghaddam

59

	30TIntroduction
	Data Parallеlism vs Control Parallеlism
	Literaturе Reviеw
	Parallеl Multipass with Invertеd Hashing and Pruning (PMIHP) Algorithm

	Proposеd Mеthod
	Rеsult
	Sеrial exеcution Vs parallеl exеcution:
	Considеration of databasе (size=5577)

	Scalability Evaluation:
	Speеd Up:
	Efficiеncy:

	Conclusion

