. IJITE

VOLUME 18, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

An Extensive Literature Review on Towards
Online Shortest Path Computation

Rashmi Shukla® & Prof. Pankaj Singh?
M-Tech Research Scholars, *Research Guide, Deptt. of Computer Science Engineering
SAM College of Engineering and Technology, Bhopal

Abstract: In this review paper we have analyzed the shortest
path computation methods as when someone drive t0 somewhere
‘far away’, he will leave your current location via one of only a
few ‘important’ traffic junctions. Starting from this informal
observation, we study the algorithmic approach transit node
routing that allows us to reduce quickest-path queries in road
networks t0 a small number of table lookups. The ability of
expressing path problems, such as shortest paths or bill of
materials, 1S considered to be a substantial extension of
conventional database languages. TO realize this extension
efficiently, path algorithms from graph theory are used. There
exist a lot of path algorithms. Most of them, however, were
designed and investigated mainly in the context of main
memory.

Keywords - Shortest Path, Online Suggestions, Traffic, Journey,
Travelling.

I. INTRODUCTION

Computing shortest paths in graphs (networks) with
nonnegative edge weights is a classical problem of
computer science. From a worst case perspective, the
problem has largely been solved that gave an algorithm that
finds all shortest paths from a starting node s using at most
m+n priority queue operations for a graph G = (V,E) with n
nodes and m edges.

However, motivated by important applications (e.g., in
transportation networks), there has recently been
considerable interest in the problem of accelerating shortest
path queries, i.e., the problem to find a shortest path
between a source node S and a target node t. In this case,
Dijkstra’s algorithm can stop as soon as the shortest path to
t is found.

A classical technique that gives a constant factor speedup is
bidirectional search which simultaneously searches forward
from s and backwards from t until the search frontiers meet.
All further speedup techniques either need additional
information (e.g., geometry information for goal directed
search) or pre computation. There is a trade-off between the
times needed for pre computation, the space needed for
storing the pre computed information, and the resulting
query time. In review existing pre computation approaches,
which have made significant progress, but still fall short of
allowing fast exact shortest path queries in very large
graphs.

In particular, from now on we focus on shortest paths in
large road networks where we use ‘shortest” as a synonym
for ‘fastest’. The graphs used for North America or
Western Europe already have around 20000 nodes so that
significantly superliner pre processing time or even slightly
superliner space is prohibitive. To our best knowledge, all
commercial applications currently only compute paths
heuristically that are not always shortest possible. The basic
idea of these heuristics is the observation that shortest paths
“usually” use small roads only locally, i.e., at the beginning
and at the end of a path. Hence the heuristic algorithm only
performs some kind of local search from s and t and then
switches to search in a highway network that is much
smaller than the complete graph. Typically, an edge is put
into the highway network if the information supplied on its
road type indicates that it represents an important road.

The computation of shortest paths is an important task in
many network and transportation related analyses. The
development, computational testing, and efficient
implementation of shortest path algorithms have remained
important research topics within related disciplines such as
operations research, management geography,
transportation, and computer science some research efforts
have produced a number of shortest path algorithms as well
as extensive empirical findings regarding the computational
performance of the algorithms.

science,

When faced with the task of computing shortest paths, one
must decide which algorithm to choose. Depending on the
application, algorithm runtime can be an important
consideration in the decision making process. Although a
number of computational evaluations have been reported
there is no clear answer as to which algorithm or set of
algorithms, runs fastest on real road networks, the most
common type of network faced by practitioners. The
primary goal of this study is to identify which algorithms
run the fastest on real road networks. A secondary goal is to
better understand the sensitivity of algorithm performance
to input data.

Past computational evaluations were mainly based on
randomly generated networks. The methods for random
network generation varied considerably. The resulting
random networks ranged from complete networks with
uniformly distributed arc lengths to highly structured grid

. IJITE

VOLUME 18, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

networks. In comparison to real road networks, random
networks often differ with respect to the degree of
connectivity as indicated by the arc-to-node ratios. The real
networks studied in this study have arc-to-node ratios
ranging from 2.66 to 3.28. This is different from many
randomly generated networks described in the literature
where arc-to-node ratios are reported as high as 10 (cf.
GALLO and PALLOTTINO, 1988).

Another aspect in which random networks can differ from
real networks stems from the fact that random network arc
lengths are usually randomly drawn in an independent
fashion. This can result in network irregularities whereby a
node may be “close” to two adjacent nodes that are “far”
apart. Such irregularities can strongly favour certain types
of algorithms and drastically slow others. The random
network generators reviewed in the literature had one
characteristic which felt resulted in significant differences
in real versus random networks, namely, they apply a
process for establishing connectivity or arc length
generation in a homogeneous fashion across a network.
Real network topology often contains areas of dense urban
network surrounded by highly sub networked suburban
areas which are then further surrounded by a rural road
structure. Certain methods for random network generation
may replicate one particular area well, for example, grid
network generators for downtown areas, but real networks
contain a mixed pattern of different types of road network
topologies which are virtually impossible to simulate.

The problem of building a traffic aware route planning
service. The idea is that users register continuous routing
queries, specifying a set of <startpoint, endpoint> tuples. In
response, the system monitors delays and sends query
results as updates to users (e.g., via email or SMS) if the
fastest route between any of these designated start-end pairs
changes, based on real-time updates to traffic delays (in
evaluation, the use of real-time delays from a traffic
monitoring deployment have done on a network of 30 taxis
in the Boston area). Like existing route planning services
(e.g., Google Maps), our system uses a graph of road
segments, and applies shortest-path planning algorithms to
that graph to recommend routes to users. Unlike existing
systems, however, our system maintains a large number of
routes for pre-designated <source, target> pairs and updates
those routes as traffic delays on road segments change. Our
system additionally allows users to specify day and time
slots along with the start and end points if they do not
desire continuous monitoring (registration tuples in this
case are of the form <startpoint, endpoint, day, time>). In
this paper, we focus on the harder problem where all user
queries require continuous monitoring.

Because small variations in delay won’t significantly affect
a user’s travel time, we are not concerned with always

finding the exact optimal route for any <start, end pair but
in detecting if a previously reported route has become
substantially non-optimal in the face of updates and in
providing a new route that is near-optimal and much better
(but not necessarily the exact optimal). By suggesting
alternate time-saving routes before the user begins to drive,
the service could prove extremely useful to commuters who
tend to get stuck in peak hour traffic congestions. Our
system is practically motivated: an iPhone application,
iCarTel (available on the app store) that are extending with
the methods in this study.

While adding support for ad-hoc traffic aware routing
queries is intuitively simple, it is not immediately clear how
a service could practically maintain the large number of
designated routes it would need to continuously keep
updated. Road network graphs contain millions of vertices
and edges; even a sub-graph corresponding to a city and its
surrounding suburbs can contain tens of thousands of
segments — for instance, the sub graph corresponding to
Boston’s road network has nearly 40,000 links. A naive
recalculation of the optimal route on arrival of every update
(or a set of updates) using a single source shortest-path
algorithm such as Dijkstra’s algorithm (or A* search) for
all registered continuous routing queries could turn out to
be a major computational overhead given that real time
traffic updates usually affect only a small part of the
network. Though such an approach might work if the
number of registered continuous routing queries is
relatively small, it is unlikely to scale as the number of
queries go up. Algorithms that are able to update shortest
paths in the presence of link changes do exist (e.g., [2]), but
they typically have a higher space or computation overhead
than is acceptable for the setting.

II.LETERATURE SURVEY

L. H. U, H. J. Zhao, M. L. Yiu, Y. Li and Z. Gong, [1] the
online shortest path problem aims at computing the shortest
path based on live traffic circumstances. This is very
important in modern car navigation systems as it helps
drivers to make sensible decisions. To the best knowledge,
there is no efficient system/solution that can offer
affordable costs at both client and server sides for online
shortest path computation. Unfortunately, the conventional
client-server architecture scales poorly with the number of
clients. A promising approach is to let the server collect
live traffic information and then broadcast them over radio
or wireless network. This approach has excellent scalability
with the number of clients. Thus, authors develop a new
framework called live traffic index (LTI) which enables
drivers to quickly and effectively collect the live traffic
information on the broadcasting channel. An impressive
result is that the driver can compute/update their shortest
path result by receiving only a small fraction of the index.

. IJITE

VOLUME 18, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

Their experimental study shows that LTI is robust to
various parameters and it offers relatively short tune-in cost
(at client side), fast query response time (at client side),
small broadcast size (at server side), and light maintenance
time (at server side) for online shortest path problem.

Holger Bast,Stefan Funke, Domagoj Matijevic, Peter
Sanders, Dominik Schultes, [2] When you drive to
somewhere ‘far away’, you will leave your current location
via one of only a few ‘important’ traffic junctions. Starting
from this informal observation, authors develop an
algorithmic approach transit node routing that allows us to
reduce quickest-path queries in road networks to a small
number of table lookups. Authors present two
implementations of this idea, one based on a simple grid
data structure and one based on highway hierarchies. For
the road map of the United States, their best query times
improve over the best previously published figures by two
orders of magnitude. Authors results exhibit various trade-
offs between average query time (5 ps to 63 us),
preprocessing time (59 min to 1200 min), and storage
overhead (21 bytes/node to 244 bytes/node).

Bin Jiang, [3] to establish the behaviour of algorithms in a
paging environment, the author analyzes the input/output
(I/O) efficiency of several representative shortest path
algorithms. These algorithms include single-course,
multisource, and all pairs ones. The results are also
applicable for other path problems such as longest paths,
most reliable paths, and bill of materials. The author
introduces the notation and a model of a paging
environment. The /O efficiencies of the selected single-
source, all pairs, and multisource algorithms are analyzed
and discussed

N. Malviya, S. Madden and A. Bhattacharya, [4] In this
study, authors address the problem of answering continuous
route planning queries over a road network, in the presence
of updates to the delay (cost) estimates of links. A simple
approach to this problem would be to recompute the best
path for all queries on arrival of every delay update. A
naive approach scales poorly when there are many users
who have requested routes in the system. Instead, authors
proposed two new classes of approximate techniques - K-
paths and proximity measures to substantially speed up
processing of the set of designated routes specified by
continuous route planning queries in the face of incoming
traffic delay updates. Authors techniques work through a
combination of pre-computation of likely good paths and
by avoiding complete recalculations on every delay update,
instead only sending the user new routes when delays
change significantly. Based on an experimental evaluation
with 7,000 drives from real taxi cabs, authors found that the
routes delivered by techniques are within 5% of the best

shortest path and have run times an order of magnitude or
less compared to a naive approach.

N. Jing, Y. W. Huang and E. A. Rundensteiner, [5]
Efficient path computation is essential for applications such
as intelligent transportation systems (ITS) and network
routing. In ITS navigation systems, many path requests can
be submitted over the same, typically huge, transportation
network within a small time window. While path pre
computation (path view) would provide an efficient path
query response, it raises three problems which must be
addressed: 1) pre computed paths exceed the current
computer main memory capacity for large networks; 2)
disk-based solutions are too inefficient to meet the stringent
requirements Of these target applications; and 3) path views
become too costly to update for large graphs (resulting in
out-of-date query results). Propose a hierarchical encoded
path view (HEPV) model that addresses all three problems.
By hierarchically encoding partial paths, HEPV reduces the
view encoding time, updating time and storage
requirements beyond previously known path
precomputation techniques, while significantly minimizing
path retrieval time. Authors prove that paths retrieved over
HEPV are optimal. Authors present complete solutions for
all phases of the HEPV approach, including graph
partitioning, hierarchy generation, path view encoding and
updating, and path retrieval. In this study, they present an
in-depth experimental evaluation of HEPV based on both
synthetic and real GIS networks. Their results confirm that
HEPV offers advantages over alternative path finding
approaches in terms of performance and space efficiency.

I11.PROBLEM IDENTIFICATION

In this paper we studied online shortest path computation;
the shortest path result has been computed based on the live
traffic circumstances. In the previous research work authors
carefully analyzed and discuss their inapplicability to the
problem (due to their prohibitive maintenance time and
large transmission overhead). To address the problem, they
suggest a architecture that broadcasts the index on the air.
They first identified a feature of the hierarchical index
structure which enables us to compute shortest path on a
small portion of index. This important feature has been
used in the solution. The LTI is a Pareto solution in terms
of four performance factors for online shortest path
computation but further it can be improved in the future in
order to improve the system performance.

IV.CONCLUSION

The online shortest path problem aims at computing the
shortest path based on live traffic circumstances. This is
very important in modern car navigation systems as it helps
drivers to make sensible decisions. There is no efficient
system that can offer affordable costs at both client and

. IJITE

VOLUME 18, NUMBER 01, 2016

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (VITE)

ISSN: 2395-2946

server sides for online shortest path computation. The
conventional client-server architecture scales poorly with
the number of clients. A promising approach is to let the
server collect live traffic information and then broadcast
them over radio or wireless network. This approach has
excellent scalability with the number of clients.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFRENCES

L. H. U, H. J. Zhao, M. L. Yiu, Y. Li and Z. Gong,
"Towards Online Shortest Path Computation,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 26,
no. 4, pp. 1012-1025, April 2014.

H. Bast, S. Funke, D. Matijevic, P. Sanders, and D.
Schultes, “In Transit to Constant Time Shortest-Path
Queries in Road Networks,” Proc. Workshop Algorithm
Eng. and Experiments (ALENEX), 2007.

Bin Jiang, "l/O-efficiency of shortest path algorithms: an
analysis,” Data Engineering, 1992. Proceedings. Eighth
International Conference on, Tempe, AZ, 1992, pp. 12-19.

N. Malviya, S. Madden and A. Bhattacharya, "A continuous
query system for dynamic route planning,” 2011 IEEE 27th
International Conference on Data Engineering, Hannover,
2011, pp. 792-803.

N. Jing, Y. W. Huang and E. A. Rundensteiner,
"Hierarchical encoded path views for path query
processing: an optimal model and its performance

evaluation,” in IEEE Transactions on Knowledge and Data
Engineering, vol. 10, no. 3, pp. 409-432, May/Jun 1998.

E.P.F. Chan and Y. Yang, “Shortest Path Tree Computation
in Dynamic Graphs,” IEEE Trans. Computers, vol. 58, no.
4, pp. 541- 557, Apr. 20009.

T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data
on Air: Organization and Access,” IEEE Trans. Knowledge
and Data Eng., vol. 9, no. 3, pp. 353-372, May/June 1997.

J.X. Yu and K.-L. Tan, “An Analysis of Selective Tuning
Schemes for Nonuniform Broadcast,” Data and Knowledge
Eng., vol. 22, no. 3, pp. 319-344, 1997.

A.V. Goldberg and R.F.F. Werneck, “Computing Point-to-
Point Shortest Paths from External Memory,” Proc. SIAM
Workshop Algorithms Eng. and Experimentation and the
Workshop Analytic Algorithmic and Combinatory
(ALENEX/ANALCO), pp. 26-40, 2005.

M. Hilger, E. K€ohler, R. M€ohring, and H. Schilling, “Fast
Point-to- Point Shortest Path Computations with Arc-
Flags,” The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, vol. 74, pp. 41-72, American
Math. Soc., 2009.

A.V. Goldberg and C. Harrelson, “Computing the Shortest
Path: Search Meets Graph Theory,” Proc. 16th Ann. ACM-
SIAM Symp. Discrete Algorithms (SODA), pp. 156-165,
2005.

[12]

[13]

[14]

[15]

D. Delling and D. Wagner, “Landmark-Based Routing in
Dynamic Graphs,” Proc. Sixth Int’l Workshop
Experimental Algorithms (WEA), pp. 52-65, 2007.

G. D’Angelo, D. Frigioni, and C. Vitale, “Dynamic Arc-
Flags in Road Networks,” Proc. 10th Int’l Symp.
Experimental Algorithms (SEA), pp. 88-99, 2011.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling,
“Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks,” Proc. Seventh Int’l Workshop
Experimental Algorithms (WEA), pp. 319-333, 2008.

R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D.
Schultes, and D. Wagner, “Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s
Algorithm,” ACM J. Experimental Algorithmics, vol. 15,
article 2.3, 2010.

