
International Journal of Innovative Trends in Engineering (IJITE)
Volume-03, Number-01, 2015

Analysis and Implementation of BCH Codec
using PGZ Algorithm

Mahadevan A1, Priyadharshini A2

1Assistant Professor, Dept of Electronics and Communication Engineering. SSIET, Chennai.
2PG Scholar, Sree Sastha Institute of Engineering and Technology, Chennai.

1. Introduction

In the present digital communication systems, it is highly

possible that the data or message get corrupted during

transmission and reception through a noisy channel medium.

The environmental interference and the physical defects in

the medium are the main causes of the data or message

corruption in the communication medium, which leads to the

injection of random bits into the original message and

corrupt the original message. To have a reliable

communication through noisy medium that has an

unacceptable Bit Error Rate (BER) and low Signal to Noise

Ratio (SNR), ECC is used. ERROR control codes (also known as

error correcting codes, ECCs) have been frequently used to

improve the dependability of a memory system [1], [2].

The error correction is based on mathematical formulas,

which are used by ECC. Error correction is taken place by

adding parity bits to the original message bits during

transmission of the data. Because of the addition of parity bits

to message bits makes the size of the original message bits

longer. Now this longer message bits is called codeword. This

codeword is received by the receiver at destination, and could

be decoded to retrieve the original message bits. ECC are

used in most of the digital applications, space and satellite

communication and cellular telephone networks. There are

many types of error correction codes are used in present

digital communication system are based on the type of error

expected, the communication medium expected error rate,

and weather retransmission is possible or not. Some of the

error correction codes, which are widely, used these days,

BCH, Turbo, Reed Solomon. These codes are different from

each other in their complexity and implementation.

The BCH code is one of the best-known and widely used

multiple-bit error correcting codes [1], [2]. Multiple-bit error

correction of a BCH code needs a low-speed serial decoding

process. BCH codes can be decoded faster by parallelizing the

Abstract

Data corruption during the transmission and reception of data because of noisy channel medium is the most common

problem faced in digital communication system; it is hard to get the reliable communication. Thus, to get the error free

communication we need Error correction code. BCH codes are used as a baseline for many recent Error Correcting Codes.

BCH code is used to correct multiple random errors. This paper discusses, performance analysis of different types of (15, 7)

BCH Decoder. The main aim of this project is to design a Single-bit Error Correcting and Double-Adjacent Error Correcting

(SEC-DAEC) parallel decoder that corrects double adjacent and single bit errors in parallel and serially corrects multiple bit

errors using Peterson Gorenstein Zierler (PGZ) algorithm. Simulation was carried out by using ModelSim – Altera 6.4a

starter edition. Synthesis was successfully done by using Quartus II.

Keywords

BCH codes, SEC-DAEC decoder, Error correcting code (ECC), Verilog, BCH Encoder, and BCH Decoder.

 21

International Journal of Innovative Trends in Engineering (IJITE)
Volume-03, Number-01, 2015

serial operations [6], [7], but parallelization incurs in a large

hardware overhead, particularly for long information bit

length. There are few multiple-bit error correcting codes that

can be decoded in parallel, e.g., product codes and some low-

density parity check (LDPC) codes, such as orthogonal Latin

square (OLS) codes [1], Euclidean geometry LDPC (EG-LDPC)

codes [9] and difference-set cyclic codes (DSCC) [10].

However, they require longer check bits than BCH codes. To

resolve these issues, Wilkerson [11] has proposed a high

speed decoding scheme for the BCH code. This scheme

utilizes parallel decoding when no error or a single-bit error

occurs, and serial decoding when multiple-bit errors occur. As

single-bit errors occur more often, this scheme achieves high-

speed decoding for most errors.

At the encoder side, binary bits are encoded by appending

some parity bits with message bits. The combination of parity

bits and message bits are called as codeword. At the decoder

side, codeword will be received and error detection and error

correction process will be carried out. This process is known

as decoding. If error occurs in received codeword, the error

will be corrected and original message bit is retrieved. Hence

it improves reduction in error rate and it will improve the

performance of BCH CODEC.

A. BCH Codes

BCH codes is an acronym for Bose, Roy Chaudhuri,

Hocquenghem, invented in 1960s and today they are used as

a baseline for many recent ECC. BCH codes are subset of the

block codes. BCH codes are belongs to a power full class of

multiple error correcting codes. BCH codes are based on well-

defined mathematical properties. These mathematical

properties are based on the GF or finite fields. The BCH code

is a cyclic code, and can be decoded serially. However, the

high-speed parallel decoding of a BCH code incurs in a large

hardware overhead [6] have proposed a BCH decoding

scheme in which only some operations are partially

parallelized, and overall, it is slower than fully parallelized

decoders.

The finite field has the property that any arithmetic

operations on field elements always have results in the field

only. To provide an excellent error correcting capability, the

generator polynomial of the BCH codes has carefully

specified roots. With a generator polynomial of g (x), a t error

correcting cyclic codes is the binary BCH codes, with a

condition that g (x) must be the least degree polynomial over

GF. The block length of the BCH code, constructed over GF

(2m) is given by the equation n = 2m – 1. BCH codes are

cyclic codes, and the degree r of the generator polynomial of

a (n, k) is given by (n-k). So, the information bits length of the

BCH codes is given by the formula k = 2^m – 1- r. In a block

codes the codeword is a combination of an information bits

and parity bits.

2. BCH Encoder

The encoder design used in this project is most commonly
used in the modern digital communication system. This
encoder design is almost common to all the BCH code
architecture, which uses the linear feedback shift register for
polynomial division. The encoder procedure is as follows

Step 1: Choose n, k, t values

n- Block length

k- Message bit

t- Error correcting code

n = 15

k = 7

t = 2

Step 2: Message polynomial

u(X) = UK−1 XK−1 + UK−2 XK−2 + ⋯+ U1X + U0

(2.1)

Step 3: Generator polynomial

 g(X) = gN−KXN−K + gN−K−1XN−K−1+. . +g1X + g0
 (2.2)

 22

International Journal of Innovative Trends in Engineering (IJITE)
Volume-03, Number-01, 2015

for t=2

g(x) = LCM{𝛼1 (𝑋),𝛼3 (𝑋)}
 (2.3)

for t=3

g(x) = LCM{𝛼1 (𝑋),𝛼3 (𝑋),𝛼5 (𝑋)}
 (2.4)

 Step 4: Encoding

a) Parity bit generation

 r(x) = XN−Kmod g(x)
 (2.5)

b) Codeword generation

 c(X) = XN−K u(X) + r(X)
 (2.6)
where

 r(x) is the parity bits polynomial

 c(x) is the codeword polynomial

 u(x) is the message polynomial and

 g(x) is the generator polynomial

Fig. 1 Block diagram of (15, 7) BCH Decoder

BCH codes are implemented as cyclic code. As a result the

logic which implements encoder and decoder is controlled

into shift register circuits. With the help of cyclic code

properties the remainder r (x) can be calculated in the linear

(n-k) stage shift register with the feedback connection to the

coefficient of generator polynomial.

In this (15, 7) BCH encoder, binary data of 7 bits are encoded

into15 bit codeword using 8 parity bits. Parity bits are

generated using generator polynomial by polynomial

division.

3. BCH Decoder

The decoding algorithm for BCH codes consist of following
steps.

• Compute syndromes
• Determine the error - locator polynomial using PGZ

algorithm
• Find error location using Chine search algorithm
• Error correction

The 15 bit received data is given as an input to the parallel to

serial shift register; the obtained serial output will be used as

an input to compute syndromes s(x). If s(x) = 0, the

transmission is error free. Otherwise, transmitted message will

be in error. This entire process is known as error detection

process. The error correction process includes PGZ algorithm

and chine’s search algorithm. PGZ algorithm accepts

syndrome as an input and computes error locator polynomial.

Fig. 2 Block diagram of (15, 7) BCH Decoder

The polynomial can be further used to find the location of the

error. Using chine’s search algorithm error location is

determined. Using the error location information, errors will

be corrected by simply flipping (converting 1 to 0 and 0 to 1)

 23

International Journal of Innovative Trends in Engineering (IJITE)
Volume-03, Number-01, 2015

location in received 15 bit code word. The 15 bits corrupted

codeword is the input to the decoder module. The task of the

decoder is to locate and to correct the errors in the corrupted

codeword and retrieve the original message.

4. Results And Discussion

Simulation Results of (15, 7) BCH Encoder and Decoder

The Fig.3 shows simulation waveform of (15, 7) BCH Encoder.

As seen in fig.3 when the enable pin is high, the input is

loaded to encoder and all other intermediate signals are set

to zero. Using this 7 bit binary inputs the parity bits (8 bits)

were calculated and these parity bits are appended to the

original message bits to obtain a 15 bit codeword or encoded

data. The same process repeats for all other input bits as well.

Fig.3 Simulation results for (15, 7) BCH Encoder

Fig.4 Simulation results for (15,7) BCH Decoder

Fig.4 shows simulation waveform of (15, 7) BCH Decoder. As

seen in fig.4 when the reset and load pin is high, received

codeword is loaded to decoder. At the decoder side the

received 15 bit codeword is given as input for syndrome

generator. If no error in received codeword syndrome output

is zero. If the syndrome output is non zero then the received

codeword has some errors. Hence it is detected and corrected

using PGZ algorithm and chine’s search algorithm.

Synthesis Results of (15, 7) BCH Encoder and Decoder

The fig. 5 and fig.6 shows RTL view of both BCH Encoder and

BCH Decoder. Synthesis was successfully done by using

Quartus II.

Fig.5 RTL schematic of (15, 7) BCH Encoder

Fig.6 RTL schematic of (15, 7) BCH Decoder

5. Conclusion And Future Work

This project covers the detailed explanation about the

necessity of Error correcting code along with the comparison

of various error correcting codes and high speed (15, 7) BCH

clk
enable
rst
data in[6..0]

bits out

bits in
clk
en enable
rst
cnt[4..0]

data out[14..0]

+
A[4..0]

B[4..0]

ADDER

D Q
PRE

ENA

CLR

D

ENA

Q
PRE

CLR

0
1

0
0
1

0
10

=
A[4..0]

B[4..0]

EQUALD

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

<
A[4..0]

B[4..0]

LESS THAN

<
A[4..0]

B[4..0]

LESS THAN

<
A[4..0]

B[4..0]

LESS THAN

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

SEL
DATAA
DATAB

OUT0

MUX21

SEL
DATAA
DATAB

OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

SEL
DATAA
DATAB

OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

SEL
DATAA
DATAB

OUT0

MUX21

parallel_to_serial:postins

serial_to_parallel:postin

Add0

5' h01 --

always1~0

always2~0

always3~0

always3~1

count[4..0]

enc_out

enc_out~0
enc_out~1

enc_out~2

Equal0

5' h10 --
Final_out[0]~reg0

Final_out[1]~reg0

Final_out[2]~reg0

Final_out[3]~reg0

Final_out[4]~reg0

Final_out[5]~reg0

Final_out[6]~reg0

Final_out[7]~reg0

Final_out[8]~reg0

Final_out[9]~reg0

Final_out[10]~reg0

Final_out[11]~reg0

Final_out[12]~reg0

Final_out[13]~reg0

Final_out[14]~reg0

LessThan0

5' h14 --

LessThan1

5' h08 --

LessThan2

5' h11 --

LFSRout[0]

LFSRout[2]

LFSRout[5]

LFSRout[7]

tap2

count~[9..5]

count~[14..10]

5' h00 --

Final_out~[14..0]

Final_out~[29..15]

15' h0000 --

LFSRout~[3..0]

LFSRout~[7..4]

4' h0 --

clk

rst
enable

in[6..0]

Final_out[14..0]

clk
reset
active syndrome
data[14..0]
gen[14..0]

syndrome comp
s1 in in[3..0]
s2 in in[3..0]
s3 in in[3..0]
s4 in in[3..0]

clk
reset
active ibm
s1 in in[3..0]
s2 in in[3..0]
s3 in in[3..0]
s4 in in[3..0]
s5 in in[3..0]
s6 in in[3..0]

ibm comp (VCC)
lambda0[3..0]
lambda1[3..0]
lambda2[3..0]
lambda3[3..0]
syn out[14..0]

clk
reset
active chains
lambda0[3..0]
lambda1[3..0]
lambda2[3..0]
lambda3[3..0]

chain comp

clk
reset
active error1
out root[14..0]
data[14..0]

codword[14..0]

1

Berlekam:bb
chain_block:cb

errorcorr_block:eb

reset
codword[14..0]

active_decoder[14..0]
data[14..0]

clk

syndrome_block:sb

 24

International Journal of Innovative Trends in Engineering (IJITE)
Volume-03, Number-01, 2015

code encoder and decoder design. The previous chapters

discuss the design technique of encoder and decoder, and

the behavior of the designs is described using Verilog. If any

2 bit error in any position of 15 bit codeword, it can be

detected and corrected. The decoder is implemented using

the PGZ and chine search algorithm. Simulation is carried out

by using ModelSim and synthesis is carried out using Quartus.

The (15, 7) BCH codec can be further implemented in

hardware and also performance analysis of different BCH

decoder can be carried out.

6. References

[1] Ibe E., Taniguchui H., Yahagi Y., Shimbo K., and Toba T. (2010)
‘Impact of scaling on neutron- induced soft error in SRAMS
from a 250 nm to design rule’,
IEEE Trans. Electron Devices, Vol. 57, No. 7, pp. 1527-1538.

[2] Liu S.F., Reviriego P., and Maestro J. A. (2012) ‘Efficient majority
logic fault detection with difference – set codes for memory
applications’, IEEE Trans. Very large scale integr. VLSI Syst., Vol.
20, No. 1, pp. 148-156.

[3] Mohammed S. J. and Abdulsada H. F. (2013) ‘FPGA
implementation of 3 bits BCH error correcting codes’,
International journal of computer applications, Vol. 71, No. 7,
pp. 35–42.

[4] Neale A. and Sachdev M. (2013) ‘A new SEC-DED error
correction code subclass for adjacent MBU tolerance in
embedded memory’, IEEE Trans. Device Mater. Reliab. , Vol. 13,
No. 1, pp. 223-230.

[5] Radaelli D., Punchner H., Wong S., and Daniel S. (2005)
‘Investigation of multi bit upset in a 150 nm technology SRAM
device’, IEEE Trans. Nucl. Sci., Vol. 52, No. 6, pp. 2433-2437.

[6] Reviriego P., Argyrides C., and Masetro J. A. (2012) ‘Efficient
error detection in double error correction BCH codes for
memory applications’, Microelectron. Reliab., Vol. 52, No. 7, pp.
1528-1530.

[7] Rohith S. and Pavithra S. (2013) ‘FPGA implementation of (15,
7) BCH encoder and decoder for text message’, IJRET, Vol. 02,
No. 09, pp. 209-214.

[8] Satoh S., Tosaka Y., and Wender S. A. (2000) ‘Geometric effect
of multiple Bit soft errors induced by cosmic ray neutrons on
DRAM’s’, IEEE Electron Dev. Lett., Vol. 21, No. 6, pp. 301-312

[9] Violante M., Sterpone L., Manuzzato A., Gerardin S., Rech P.,
Bagatin M., Paccagnella A., Andreani M., Gorini G., Pietropaolo
A., Cardarilli G., Pontarelli S., and Forst C. (2007) ‘A new
hardware /software platform and a new 1/E neutron source for

soft error studies :FPGAs at the ISIS facility’, IEEE Trans.Nucl.
Sci., Vol. 54, No. 4, pp. 1184-11889.

[10] Wang Z. (2013) ‘Hierarchical decoding of double error
correcting codes for high speed reliable memories’, Proc.
ACM/EDAV/IEEE Des. Autom. Conf., pp. 1-7.

[11] Wilkerson C., Alamaldeen A.R., Chisti Z., Wu W., Somasekhar D.,
and Lu S. (2010) ‘Reducing cache power with low cost, multi bit
error correcting codes’, in Proc. Annu. Int. Symp. Comp. Archit.,
pp. 83-93.

 25

