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1. Introduction  

In the present digital communication systems, it is highly 

possible that the data or message get corrupted during 

transmission and reception through a noisy channel medium. 

The environmental interference and the physical defects in 

the medium are the main causes of the data or message 

corruption in the communication medium, which leads to the 

injection of random bits into the original message and 

corrupt the original message. To have a reliable 

communication through noisy medium that has an 

unacceptable Bit Error Rate (BER) and low Signal to Noise 

Ratio (SNR), ECC is used. ERROR control codes (also known as 

error correcting codes, ECCs) have been frequently used to 

improve the dependability of a memory system [1], [2]. 

The error correction is based on mathematical formulas, 

which are used by ECC. Error correction is taken place by 

adding parity bits to the original message bits during 

transmission of the data. Because of the addition of parity bits 

to message bits makes the size of the original message bits 

longer. Now this longer message bits is called codeword. This 

codeword is received by the receiver at destination, and could 

be decoded to retrieve the original message bits. ECC are 

used in most of the digital applications, space and satellite 

communication and cellular telephone networks. There are 

many types of error correction codes are used in present 

digital communication system are based on the type of error 

expected, the communication medium expected error rate, 

and weather retransmission is possible or not. Some of the 

error correction codes, which are widely, used these days, 

BCH, Turbo, Reed Solomon. These codes are different from 

each other in their complexity and implementation. 

The BCH code is one of the best-known and widely used 

multiple-bit error correcting codes [1], [2]. Multiple-bit error 

correction of a BCH code needs a low-speed serial decoding 

process. BCH codes can be decoded faster by parallelizing the 
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serial operations [6], [7], but parallelization incurs in a large 

hardware overhead, particularly for long information bit 

length. There are few multiple-bit error correcting codes that 

can be decoded in parallel, e.g., product codes and some low-

density parity check (LDPC) codes, such as orthogonal Latin 

square (OLS) codes [1], Euclidean geometry LDPC (EG-LDPC) 

codes [9] and difference-set cyclic codes (DSCC) [10]. 

However, they require longer check bits than BCH codes. To 

resolve these issues, Wilkerson [11] has proposed a high 

speed decoding scheme for the BCH code. This scheme 

utilizes parallel decoding when no error or a single-bit error 

occurs, and serial decoding when multiple-bit errors occur. As 

single-bit errors occur more often, this scheme achieves high-

speed decoding for most errors. 

At the encoder side, binary bits are encoded by appending 

some parity bits with message bits. The combination of parity 

bits and message bits are called as codeword. At the decoder 

side, codeword will be received and error detection and error 

correction process will be carried out. This process is known 

as decoding. If error occurs in received codeword, the error 

will be corrected and original message bit is retrieved. Hence 

it improves reduction in error rate and it will improve the 

performance of BCH CODEC.  

A. BCH Codes 

BCH codes is an acronym for Bose, Roy  Chaudhuri, 

Hocquenghem, invented in 1960s and today they are used as 

a baseline for many recent ECC. BCH codes are subset of the 

block codes. BCH codes are belongs to a power full class of 

multiple error correcting codes. BCH codes are based on well-

defined mathematical properties. These mathematical 

properties are based on the GF or finite fields. The BCH code 

is a cyclic code, and can be decoded serially. However, the 

high-speed parallel decoding of a BCH code incurs in a large 

hardware overhead [6] have proposed a BCH decoding 

scheme in which only some operations are partially 

parallelized, and overall, it is slower than fully parallelized 

decoders. 

The finite field has the property that any arithmetic 

operations on field elements always have results in the field 

only. To provide an excellent error correcting capability, the 

generator polynomial of the BCH codes has carefully 

specified roots. With a generator polynomial of g (x), a t error 

correcting cyclic codes is the binary BCH codes, with a 

condition that g (x) must be the least degree polynomial over 

GF. The block length of the BCH code, constructed over GF 

(2m) is given by the equation n = 2m – 1. BCH codes are 

cyclic codes, and the degree r of the generator polynomial of 

a (n, k) is given by (n-k). So, the information bits length of the 

BCH codes is given by the formula k = 2^m – 1- r. In a block 

codes the codeword is a combination of an information bits 

and parity bits. 

2. BCH Encoder 

The encoder design used in this project is most commonly 
used in the modern digital communication system. This 
encoder design is almost common to all the BCH code 
architecture, which uses the linear feedback shift register for 
polynomial division. The encoder procedure is as follows 

Step 1: Choose n, k, t values 

n- Block length 

k- Message bit 

t- Error correcting code 

n = 15 

k = 7 

t = 2 

Step 2: Message polynomial  

u(X) = UK−1 XK−1 + UK−2 XK−2 + ⋯+ U1X + U0 

                                                            
(2.1) 

Step 3: Generator polynomial 

            g(X) = gN−KXN−K + gN−K−1XN−K−1+. . +g1X + g0
                        (2.2)
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for t=2 

g(x) = LCM{𝛼1 (𝑋),𝛼3 (𝑋)}     
                                   (2.3) 

for t=3 

g(x) = LCM{𝛼1 (𝑋),𝛼3 (𝑋),𝛼5 (𝑋)}                        
                                                              (2.4) 

 Step 4: Encoding 

a) Parity bit generation 

                             r(x) = XN−Kmod g(x)                                       
                                   (2.5) 

b) Codeword generation 

                              c(X) = XN−K u(X) + r(X)                           
              (2.6) 
where 

  r(x) is the  parity bits polynomial 

  c(x) is the codeword polynomial 

  u(x) is the  message polynomial and 

  g(x) is the generator polynomial 

 
Fig. 1 Block diagram of (15, 7) BCH Decoder 

BCH codes are implemented as cyclic code. As a result the 

logic which implements encoder and decoder is controlled 

into shift register circuits. With the help of cyclic code 

properties the remainder r (x) can be calculated in the linear 

(n-k) stage shift register with the feedback connection to the 

coefficient of generator polynomial. 

In this (15, 7) BCH encoder, binary data of 7 bits are encoded 

into15 bit codeword using 8 parity bits. Parity bits are 

generated using generator polynomial by polynomial 

division. 

3. BCH Decoder 

The decoding algorithm for BCH codes consist of following 
steps. 

• Compute syndromes 
• Determine the error - locator polynomial using PGZ 

algorithm 
• Find error location using Chine search algorithm 
• Error correction  

 
The 15 bit received data is given as an input to the parallel to 

serial shift register; the obtained serial output will be used as 

an input to compute syndromes s(x). If s(x) = 0, the 

transmission is error free. Otherwise, transmitted message will 

be in error. This entire process is known as error detection 

process. The error correction process includes PGZ algorithm 

and chine’s search algorithm. PGZ algorithm accepts 

syndrome as an input and computes error locator polynomial. 

 
Fig. 2 Block diagram of (15, 7) BCH Decoder 

 
The polynomial can be further used to find the location of the 

error. Using chine’s search algorithm error location is 

determined. Using the error location information, errors will 

be corrected by simply flipping (converting 1 to 0 and 0 to 1) 
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location in received 15 bit code word. The 15 bits corrupted 

codeword is the input to the decoder module. The task of the 

decoder is to locate and to correct the errors in the corrupted 

codeword and retrieve the original message. 

4. Results And Discussion 

Simulation Results of (15, 7) BCH Encoder and Decoder 

The Fig.3 shows simulation waveform of (15, 7) BCH Encoder. 

As seen in fig.3 when the enable pin is high, the input is 

loaded to encoder and all other intermediate signals are set 

to zero. Using this 7 bit binary inputs the parity bits (8 bits) 

were calculated and these parity bits are appended to the 

original message bits to obtain a 15 bit codeword or encoded 

data. The same process repeats for all other input bits as well. 

 
Fig.3 Simulation results for (15, 7) BCH Encoder 

 

Fig.4 Simulation results for (15,7) BCH Decoder 

Fig.4 shows simulation waveform of (15, 7) BCH Decoder. As 

seen in fig.4 when the reset and load pin is high, received 

codeword is loaded to decoder. At the decoder side the 

received 15 bit codeword is given as input for syndrome 

generator. If no error in received codeword syndrome output 

is zero. If the syndrome output is non zero then the received 

codeword has some errors. Hence it is detected and corrected 

using PGZ algorithm and chine’s search algorithm. 

Synthesis Results of (15, 7) BCH Encoder and Decoder 

The fig. 5 and fig.6 shows RTL view of both BCH Encoder and 

BCH Decoder. Synthesis was successfully done by using 

Quartus II. 

 

Fig.5 RTL schematic of (15, 7) BCH Encoder 

 

Fig.6 RTL schematic of (15, 7) BCH Decoder 

5. Conclusion And Future Work 

This project covers the detailed explanation about the 

necessity of Error correcting code along with the comparison 

of various error correcting codes and high speed (15, 7) BCH 
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code encoder and decoder design. The previous chapters 

discuss the design technique of encoder and decoder, and 

the behavior of the designs is described using Verilog. If any 

2 bit error in any position of 15 bit codeword, it can be 

detected and corrected. The decoder is implemented using 

the PGZ and chine search algorithm. Simulation is carried out 

by using ModelSim and synthesis is carried out using Quartus. 

The (15, 7) BCH codec can be further implemented in 

hardware and also performance analysis of different BCH 

decoder can be carried out. 
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