
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-05, NUMBER-02, 2015

Traffic-Aware Design of a High-Speed FPGA using
Network Intrusion Detection System

Ravi D. Bhadja1, Prof. N. M. Wagdarikar2

Pursuing M.E (VLSI and ES), SKNCOE, Pune, Maharashtra, India. 2Asst. Prof. ECE department, SKNCOE, Pune, Maharashtra, India.

Abstract : Network Intrusion Detection Systems (NIDS) are
critical network security tools that help protect distributed
computer installation from malicious users software-based NIDS
architectures are becoming strained as network data rates
increase and attacks intensify in volume and complexity. Now a
days, researchers have proposed using FPGAs to perform the
computationally-intensive components of a NIDS. Here, we
present the next logical step in NIDS architecture: the integration
of network interface hardware and packet analysis hardware into
a single FPGA chip. This integration permits better customization
of the NIDS as well as a more flexible foundation for network
security operation. To demonstrate the benefits of this technique,
we have implemented a complete NIDS in a Xilinx Vertex II/Pro
FPGA that performs in-line packet filtering on multiple Gigabit
Ethernet links using rules from the Snort attack database.

Keywords – FPGA, Network Intrusion Detection System, in-line
packet filtering.

1. INTRODUCTION

Network Intrusion Detection System is a device or software
application that monitors network or system activities for
malicious activities or policy violation and produces report to
a management. Software-based NIDS, such as the widely
employed software implementation of the Snort NIDS,
cannot sustain the multi-Gbits/sec traffic rates typical of
network backbones and, thus, are confined to be used in
relatively small-scale (edge) networks. For high-speed
network links, hardware-based NIDS solutions appear to be a
more suitable choice, but the hardware implementation needs
to permit the latest update of the supported rule set, so as to
cope with the continuous emergence of new different types
of network intrusion threats and attacks. Field-programmable
gate arrays (FPGAs) are, thus, appealing candidates. Though,
an FPGA-based NIDS can be easily and dynamically
reprogrammed when the content matching rules change.The
specific contributions of this work can be summarized as
follows:

1] Snort rules analysis and relevant classification policies:
We analyze the whole rule set of Snort, to organize such set
into disjoint subsets, identified by suitable combinations of
packet header fields. For instance, the rule subset in charge
of detecting possible exploits against http servers (protocol =
TCP, destination port = 80) obviously differs from the set of
rules to be employed by another protocol such as FTP or
SMTP; but, perhaps less obviously, also differs from the
subset dedicated to analyze threats still for the http protocol,
but against web clients (protocol = TCP, source port = 80).
Such an analysis yields the classification policies exploited
in the dispatching of traffic toward the hardware modules,
each supporting one or more sub-sets.2] Also, in the software
implementation of Snort , rules are grouped with the help of
port/protocol, and for each perticular packet, only the group
of rules corresponding to the port/protocol of the packet are
checked. This rule partitioning will reduce memory
consumption and CPU usage of Snort rule-set. Unlike the
software implementation, in our case this partitioned is the
first step for applying traffic awareness.

2] Real world traffic analysis for HW module sizing: We
offline analyze real-world traffic, provided by an Internet
Service Provider, to quantitatively assess how traffic splits
according to the envisioned classification policies, determine
the expected worst-case per-class throughput and, thus, set
forth the relevant input rate requirements for dimensioning
each content matching HW module. In essence, we apply, for
an HW-based development, a methodology similar to the one
proposed in [3], where an adaptive algorithm depending on
the traffic mix is used to optimize a software based IDS. We
stress that the goal of such an analysis is not to provide a
once-for-all system dimensioning, but, rather, to suggest a
methodological approach. Indeed, variations in the traffic
mix do occur during the operating lifetime of the NIDS and
may also depend on the specific operator’s deployment. This
does not appear to be a practical concern, as in any case the
synthesis of the content matching engine must be rerun at
every rule set update (order of once per week), whereas

57

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-05, NUMBER-02, 2015

variations in the traffic mix are shown much slower, in the
order of many weeks. And when significant variations in the
traffic mix are detected, the resulting system redesign can be
conveniently accounted for, while performing the synthesis
associated to the periodic rule update.

3] HW module implementation and relevant tradeoffs: We
perform several constrained syntheses (with respect to speed
and area) of the different SMEs, to gather insights in the
emerging area/speed tradeoffs for the specific NIDS rule set
synthesis. If multiple copies of the same SME are used to
achieve a higher throughput, the choice between area or
speed optimization of the engine is not unique, but strictly
depends on the circuits to be implemented, and in some
cases, the emerging area-delay tradeoffs are little unexpected
. Use of multiple copies of low-speed SMEs allows to make
an optimization between the area of the single engine, its
maximum operating frequency, and the overall throughput.

2. SYSTEM MODEL

As anticipated in the introduction, our proposed system
comprises multiple string matching modules. These modules
are further organized into clusters, of suitably sized so as to
handle the expected per-cluster traffic load. Packets
balancing will be done across clusters on the basis of policies
implemented in a block called dispatcher.

Fig.1 implementation of string matching system [1]

The main blocks of the system are:

• Network interface: It collects packets from the
network link under monitoring;

• Dispatcher: It provides a header-based packet
classification, whose result is used to determine to
which specific string matching cluster the packet is
transmitted;

• SMEs: blocks performing string matching; their
design is identical (as described in the previous
section), but the content searching rules synthesized
in SMEs belonging to different clusters differ and
specifically depend on the type of traffic routed to
the considered cluster. A generic string matching
system is composed of n cluster, each one clocked
at a specific frequency fi and composed of Ki
identical SMEs.

• Queue manager: This block provides a queue for
each SME cluster. The queue provides the buffering
of packets to cope with packet bursts. The queues
can be realized by using external memories to
provide enough space. The memory can be
partitioned as a set of circular buffers, each one
controlled by two pointers. A control FSM,
realizing a round-robin policy, allows using the
memory as a set of independent queues. Since the
SME cluster may be clocked with a different
frequency, with respect to each other and to the
queue manager, asynchronous FIFOs for clock
decoupling are deployed between the queue and the
SMEs.

Since, multibyte SMEs do complicate the internal design, the
queue output uses 8 bits. Conversely, the interfaces between
the remaining modules can be implemented using multiple
characters at a time.

The architecture shown in Fig. 1 is very flexible and general.
The resulting operation in fact depends on a configuration
setting that includes the following decisions and parameters:

• Dispatcher classification policy;
• string matching rules loaded over each cluster of

engines;
• operating frequency of each cluster; and

number of SMEs deployed in every cluster.

3. PREVIOUS WORK

Software-based NIDS, such as the widely employed software
implementation of the Snort NIDS [1], cannot sustain the

58

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-05, NUMBER-02, 2015

multi-Gbits/sec traffic rates typical of network backbones
and, thus, are confined to be used in relatively small-scale
(edge) networks. For high-speed network links, hardware-
based NIDS solutions appear to be a more realistic choice,
but the hardware implementation needs to permit the
frequent update of the supported rule set, so as to cope with
the continuous emergence of new different types of network
intrusion threats and attacks.

4. PROPOSED METHODOLOGY

we are interested in exploring the performance gains that
may be achieved by dispatching different traffic types to
different clusters, consistently distributing different content
matching rules over different engines, independently
optimize the area-frequency tradeoff for each deployed
engine, and dimensioning each engine depending on the
traffic load conditions. For simplicity, we take a practical
three-steps design, organized as follows:

Step 1: Rule set distribution and relevant packet dispatching
policy. The first step, is to distribute different content
matching rules across multiple engines. Such distribution is
driven by two practical requirements:

1) Permit an elementary dispatching policy, based on simple
protocol header information, meanwhile 2) attempt to obtain
(as much as possible disjoint) subsets of size smaller than the
whole rule set. Our proposed classification, indeed relies on
trivial protocol/ port information, thus permitting a
straightforward implementation of the dispatcher. It is worth
noting that per-protocol grouping of string matching rules is
the most natural direction, as in practical NIDS such as
Snort, rules defined for the same protocol not rarely share
common substrings (for instance, the string “HTTP” requires
to be matched by most rules applied to protocol: TCP and
destination port: 80) and, hence, may yield savings in the
subsequent HW circuit design.

Step 2: Per-engine optimized HW design. For each specific
engine (and its subset of different rules), Quite surprisingly,
such tradeoff significantly depends on the specific rule set
considered. The output of this second stage design is the
frequency at which each engine is implemented.

Step 3: Traffic-load-based system dimensioning. we perform
an experimental analysis of real world traffic devised to
provide information about the per cluster load and,

consequently, determine how many copies of each
synthesized engine are needed to sustain the resulting load.

Obviously, the outlined approach is open to improvements,
by using information here exploited for individual steps in a
more holistic design procedure (e.g., use traffic information
for determining how to distribute rules across engines),
although it does not appear simple to move from heuristics to
a more formal design methodology. Finally, even if here we
refer always to the SMEs described in the previous section,
we outline that this method can be generically applied to
many of the string matching systems proposed in the
literature. For example, also, work in [4] could benefit of a
partitioned traffic-aware implementation, since the
implementation techniques used to improve performances
(i.e., pipelining, parallelism, and memory replication) suffer
from the same scalability issues already mentioned in the
previous section for other techniques [2], [3]. Instead,
packet-level parallelization should be able to better exploit
area/delay tradeoff than the classical parallel/ pipelined
implementation, and the traffic-awareness could be easily
reduce the memory replication.

5. CONCLUSION

Network intrusion detection systems (NIDS) are a necessary
tool for monitoring and protecting computer networks from
malicious users. As network data rates and malicious user
sophistication have increased over the years, it is necessary
to consider new NIDS architectures that will be able to meet
stringent constraints. We can implement a complete and
functional NIDS in a commercial FPGA chip. This system
can perform in-line packet filtering on multiple Gigabit
Ethernet links using intrusion detection rules based on the
Snort rule set.

REFERENCES

[1] S. Pontarelli, C. Greco, E. Nobile, S. Teofili, and G. Bianchi,
“Exploiting Dynamic Reconfiguration for FPGA Based
Network Intrusion Detection Systems,” Proc. IEEE Int’l Conf.
Field Programmable Logic and Applications (FPL), pp. 10-14,
2010.

[2] N. Yamagaki, R. Sidhu, and S. Kamiya, “High-Speed Regular
Expression Matching Engine Using Multi-Character NFA,”
Proc. Int’l Conf. Field Programmable Logic and Applications,
pp. 131-136,2008.

[1] I. Sourdis, D.N. Pnevmatikatos, and S. Vassiliadis, “Scalable
Multigigabit Pattern Matching for Packet Inspection,” IEEE

59

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-05, NUMBER-02, 2015

Trans. Very Large Scale Integration Systems, vol. 16, no. 2,
pp. 156-166, Feb. 2008.

[2] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A
Reconfigurable Perfect-Hashing Scheme for Packet
Inspection” Proc. 15th Int’l Conf. Field Programmable Logic
Application, pp. 644-647, 2005.

AUTHOR'S PROFILE

Ravi Bhadja has received Bachelor of Engineering degree in
Electronics & Telecommunication Engineering from JNU
College, Jodhpur in the year 2012. At present I am pursuing
M.Tech. with the specialization of E&TC in SKNCOE,
pune, maharastra. His area of interest VLSI and Embedded.

Asst. Prof. N.M. Wagdarikar, currently working as
assistant professor in Smt. Kashibai Nawale College of
Engineering, Pune, Maharastra.

60

