
INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-06, NUMBER-01, 2015

Prevention Mechanism For Sqlia Using Hash Key
With XML

M. Shanmugham C. Maleappane Lawrence
Assistant Professor Assistant Professor

 Christ College of Engg & Tech. Christ College of Engg & Tech.

Abstract - The past decades SQL Injection attacks have
been used to read sensitive data form database and
preventive methods are blocking the SQLIA. The present
research has been given a cryptographic solution with
the mechanism through HASH Function which has been
stored in XML File and verified directly.

Keywords - SQL Injection attacks, HASH function, XML
Path.

1. INTRODUCTION

In present life, the information is the most important asset
for every organization and provides proper information
security. SQL Injection Attacks (SQLIA’s) are considered
as top level threats for web application and windows
application. For example: A group of hackers hacked the
website using SQL Injection and other breached
Administration Site. The Evolution of security used in
detecting and preventing SQLIA’s. SQL Injection is the
hacking technique which attacks through web application’s
input field to gain access the resources in the database
using SQL Statements. Most of the web applications are
secured through Login Page which provides Username and
Password. The attacker’s use vulnerable user inputs for
embedding the commands and gets executing the
application. The attacker using the direct access the
database for underlying application or alter the
confidentially information. So, overcome this situation the
prevention should be made on SQL Injection Attacks
(SQLIA).

SQL injection is a kind of malicious attack so that it can
read sensitive data from the database. Different types
of SQL injection and preventing methods are available
nowadays. The proposed novel techniques which provide a
cryptographic solution to this issue in the login phase. The
advantage of new approach against the existing mechanism
are the user details are stored to the database along with
cipher text (hash key value) which is generated by the hash
function using username and password. The fixed length
hash function value is simultaneously stored to the xml
file. In the login phase, the authorized persons hash key
value is checked in the xml file instead username and

password are directly executed in the database.

2. RELATED WORK

One of the techniques prevents the SQL injection using
web service and other technique involves Encryption based
solution.

3. PROPOSED METHODOLOGY

3.1 Proposed Technique Executed in Cryptographic
solution in XML File:

This Technique is used to prevent SQLIA’s using
XMLPATH Cryptographic Solution. At the user
registration phase, the Hash Function writes the Fixed
length Cryptographic value to the XML File using Name
and Password. The user login application is redirected to
XML file instead of moving to the database. Moreover,
this technique proved to be efficient and a low overhead on
the database. The contribution of this work is as follows:

A new automated technique for preventing SQLIA’s where
no interaction and no dealing with the sensible data in the
database which requires the KeyGen function returns
Cipher text value and Generate XML file. It is used for the
temporary storage of non-sensitive data’s. The hash key
generation function and the generating the XML file.
Innovative technique (figure: 1) monitors dynamically
generating the Hash key values and stored it to the XML
file. It may also possible to violate the sensible data at the
time of the verification. So, we are verifying the authorized
person in the XML file.

3.2 This proposed technique consists of two filtration
models

private string KeyGen(string sName,string sPassword)

 {
 var x = "@@" + sName + sPassword + "@@";
 var hash = x.GetHashCode();
 return hash.ToString();
 }
 private void GenerateXml()

 43

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-06, NUMBER-01, 2015

 {
SqlConnection con = new SqlConnection(@"server=.;
database=Injection; Integrated security= true;");

DataSet ds = new DataSet();

try
{
 con.Open();
 SqlDataAdapter da =new SqlDataAdapter("Select cKey
From Customer1", con);
 da.Fill(ds,"Hash");

ds.WriteXml(Server.MapPath("Xml")+"\\HashFile.xml");
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 finally
 {
 con.Close();
 }
}
Fig 1: Shows the XML File generation of Hash Key
value protected void Login1_Authenticate(object
sender, AuthenticateEventArgs e)

{
 string logingKey = KeyGen(Login1.UserName,
Login1.Password);
DataSet ds = new DataSet();
ds.ReadXml(Server.MapPath("Xml") + "\\HashFile.xml");
bool validateLogin = false;
foreach (DataRow item in ds.Tables[0].Rows)
 {
 if (item["ckey"].ToString() == logingKey)
 {
 validateLogin = true;
 break;
 }
 }
 if (validateLogin)
 {
 Response.Redirect("CustomerInfo.aspx");
 }
 else
 {
 Response.Write("Login Failed");
 }
}
Fig 2: Verifying the authentication of Hash Key in the
XML

File.

4. SYSTEM MODEL

4.1 Registration Phase

4.2 Login Phase

5. CONCLUSION

The sensible data are not checked directly, they are
verified in the form of cipher text in the XML file. The
Hash Key values are also stored to the database at the time
of registration for future use.

6. FUTURE SCOPES

We intend to analyze the input string which is given as
input to the web form by a user. The independent analysis
of the input string will give the greater performance to
protect SQL Injection. If user input is properly analyzed,
we can protect SQL injection in a better way. These results
show that our technique represents a promising approach
to countering SQLIA’s and motivate further work in this
direction.

REFERENCES

[1] Indrani Balasundaram et al. “An authentication scheme for
preventing SQL injection attack using hybrid encryption

 44

INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946
VOLUME-06, NUMBER-01, 2015

(PSQLIA-HBE)” Euro journal publishing, 2011.

[2] XuePing-Chen “SQL injection attack and guard technical
research” 2011.

[3] F. Bouma, “Stored Procedures are Bad, O’kay,” Technical
report, Asp.Net Weblogs, November 2003.
http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.aspx

[4] Mayank Namdev “Review of SQL Injection Attack and
Proposed Method for Detection and Prevention of SQLIA” July
2012.

[5] Manju Khari “SQLIA Detection and Prevention Approaches:
A Survey” May 2013

AUTHOR’S PROFILE

M. SHANMUGHAM has received his Master of
Computer Applications degree from Pope John Paul II
college of Education, Pondicherry in the year 2007. At
present he is working in Christ College of Engineering and
Technology. His area of interest Database Management
Systems and Object Oriented Programming System.

C. MALEAPPANE LAWRENCE has received his
Master of Computer Applications degree from Rajiv
Gandhi college of Engineering, Pondicherry in the year
2010 and also M.Tech degree in Computer Science from
SRM University, Chennai in the year 2015. At present he
is working in Christ College of Engineering and
Technology. His area of interest Software Engineering and
Object Oriented Programming Concepts.

 45

http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.aspx

	INTRODUCTION
	RELATED WORK
	One of the techniques prevents the SQL injection using web service and other technique involves Encryption based solution.

	PROPOSED METHODOLOGY
	Proposed Technique Executed in Cryptographic solution in XML File:

	SYSTEM MODEL
	CONCLUSION
	FUTURE SCOPES
	REFERENCES
	AUTHOR’S PROFILE

