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1. Introduction  

The first paper in Graph Theory was written by Euler in 1736 
when he settled the famous unsolved problem of his day, 
known as the Konigsberg Bridge problem. This paper, as well 
as the one written by Vandermonde on the knight problem, 
carried on with the analysis situs initiated by Leibniz. Euler’s 
formula relating the number of edges, vertices, and faes of a 
convex polyhedron was studied and generalized by Cauchy 
and L’Huillier, and is at the origin of topology. In particular, 
the term “graph” was introduced by Sylvester in a paper 
published in 1878 in Nature, where he draws an analogy 
between “quantic invariants” and “co-variants” of algebra and 
molecular diagrams. The first textbook on graph theory was 
written by Dense Konig, and published in 1936. Another book  
by Frank Harary, published in 1969. 

The origin of graph theory can be traced back to Euler’s work 
on the Konigsberg problem (1736), which subsequently led to 
the concept of an Eulerian graph. The study of cycles on 
polyhedra by the Thomas P. Kirkman (1805 – 65) led to the 
concept of a Hamiltonian graph. 

The concept of a tree, a connected graph without cycles, 
appeared implicity in the work of Gustav Kirchhoff (1824 – 
87), who employed graph – theoretical ideas in the 
calculation of currents in electrical networks or circuits. Later, 
Arthur Cayley (1821- 95), James J. Sylvester(1806-97), George 
Polya(1887-1985), and others use ‘tree’ to enumerate 

chemical molecules. The study of planar graphs originated in 
two recreational problems involving the complete graph K5 
and the bipartite graph K3,3. These graphs proved to be 
planarity, as was subsequently demonstrated by Kuratowski. 
 
2. Preliminaries  

Let G be a finite, simple, undirected (p,q) graph with vertex 
set V(G) and edge set E(G). 

Definition 2.1 

A graph G consists of a pair (V(G), E(G)) where V(G) is a non-
empty finite set whose elements are called points or vertices 
and E(G) is a set of unordered pairs of distinct elements of 
V(G). The elements of E(G) are called lines or edges of the 
graph G. 

Definition 2.2 

A graph H = (V1, E1) is called a subgraph of G = (V, E)            
if  V1 ⊆ V and E1 ⊆ E. If H is a subgraph of G we say that G is a 
supergraph of H.  H is called a spanning subgraph of G       
if V1 = V. H is called an induced subgraph of G if H is the 
maximal subgraph of G with point set V1. Thus, if H is an 
induced subgraph of G, two points are adjacent in H if and 
only if they are adjacent in G. 
 
Definition 2.3 
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A graph in which every two distinct points are adjacent is 
called a complete graph. The complete graph with p points 
is denoted by Kp . 
 
Definition 2.4 

A graph G is called a bigraph or bipartite graph if V can be 
partitioned into two disjoint subsets V1 and V2 such that 
every line of G joins a point of V1 to a point of V2. (V1, V2) is 
called a bipartition of G. If further G contains every line 
joining the points of V1 to the points of V2 then G is called a 
complete bigraph. If V1 contains m points and V2 contains n 
points then the complete bigraph G is denoted by Km,n .. K1,n  
is called a star graph for n ≥ 1. 
 
Definition 2.5 

A walk of a graph G is an alternating sequence of points and 
lines v0, e1, v1, e2, v2,…..,vn-1, en, vn beginning and ending 
with points such that each line ei is incident with vi-1 and vi. 
We say that the walks join v0 and vn and it is called a v0 – vn 
walk. v0 is called the initial point and vn s called the 
terminal point of the walk. The above walk is also denoted 
by v0, v1, v2,…..,vn the lines of the walk being self evident. A 
walk is called a path if all its points are distinct.  A path with n 
vertices is  denoted   by Pn. 
 
Definition 2.6 

A v0 –vn walk is closed if v0 = vn.  A closed walk  v0, v1, v2, 
.........vn = v0 in which n ≥ 3 and v0, v1, v2,…..,vn-1 are distinct is 
called a cycle with n-1 vertices. The cycle consisting n vertices 
is denoted by Cn,  the number of lines in the cycle is known 
as length of that cycle. The length of Cn is n. 
 
Definition 2.7 

A graph that contains no cycles is called an acyclic graph. A 
connected acyclic graph is called a tree. 
 
Definition 2.8 

The degree of a vertex vi in a graph G is the number of lines 
incident with vi. The degree of  vi is denoted by dG(vi) or  
deg vi or simply  d(vi). A vertex v of degree 1 is called a 
pendent vertex or end vertex. For any graph G, we define              
δ(G) = min{deg v/ v∈V(G)} and ∆(G) = max{deg v/ v∈V(G)}. If 
all the points of G have the same degree r then δ(G) = ∆(G) = 
r and in this case G is called a regular graph of degree r. 
 
Definition 2.9 

Let G be a connected graph and v∈V(G). The eccentricity 
e(v) of v is the distance to a vertex farthest from v.  Thus    
e(v) = max{d(u,v) : u∈V(G)}. The radius r(G)  is the minimum 
eccentricity of the vertices, whereas the diameter diam(G) is 
the maximum eccentricity. For any connected graph G, r(G) ≤ 
diam(G) ≤ 2r(G).  The vertex v is a central vertex if e(v) = r(G). 
The center C(G)  is the set of all central vertices. The central 
subgraph <C(G)> of the graph G is the subgraph induced by 
the center. For a vertex v, each vertex at a distance e(v) from v 
is an eccentric vertex of  v.  The Eccentric set of a vertex v 
is defined as E(v) = { u∈V(G) / d(u,v) = e(v)}. 
 
Definition 2.10 

The open neighborhood N(v) of a vertex v is the set of all 
vertices adjacent to v in G. N[v] = N(v) + {v} is known as the 
closed neighborhood of v.  
 
For a vertex v ∈ V(G), Ni(v) = {u∈ V(G): d(u,v) = i} is defined 
to be the ith neighborhood of v in G. 
 
Definition 2.11 

A set D ⊆ V (G) is a dominating set of G, if every vertex in V-
D is adjacent to some vertex in D. The dominating set D is a 
minimal dominating set if no proper subset D’ of D is a 
dominating set. The minimal dominating set with minimum 
cardinality is known as a minimum dominating set. The 
cardinality of minimum dominating set is known as the 
domination number and is denoted by γ(G). 
 
Definition 2.12 

A dominating set D ⊆ V (G) is a connected dominating set if 
the induced subgraph <D> is connected. The connected 
dominating set D is minimal connected dominating set if 
no proper subset D’ of D is a connected dominating set. The 
minimal connected dominating set with minimum cardinality 
is known as a minimum connected dominating set.         
The cardinality of   minimum connected dominating set is 
known as a connected domination number and is denoted 
by γc (G). 
 
 
Definition 2.13 

A set  S ⊆ V(G) is known as an eccentric point set of G if for 
every v ∈ V-S there exist at least one vertex u in S such that u 
∈ E(v). An eccentric point set S of G is a minimal eccentric 
point set if no proper subset S’ of S is an eccentric point set 
of G. A minimal eccentric point set with minimum cardinality 
is known as minimum eccentric point set of G. The 
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cardinality of the minimum eccentric point set of G is called 
as an eccentric number of G and is denoted by e(G). 
 
Definition 2.14 
 
A set D ⊆ V(G) is an eccentric dominating set if D is a 
dominating set of G and also for every v in V-D there exist at 
least one eccentric point of v in D. The eccentric dominating 
set is a minimal eccentric dominating set if no proper 
subset D’ of D is an eccentric dominating set. The minimal 
eccentric dominating set with minimum cardinality is called as 
a minimum eccentric dominating set. The cardinality of 
minimum eccentric dominating set is known as eccentric 
domination number and is denoted by γed (G). 
 
Definition 2.15 
 
A set D ⊆ V(G) is a total eccentric dominating set if D is an 
eccentric dominating set of G and also the induced subgraph 
<D> has no isolated vertices. The total eccentric dominating 
set is a minimal total eccentric dominating set if no proper 
subset D’ of D is a total eccentric dominating set. The minimal 
total eccentric dominating set with minimum cardinality is 
called as a minimum total eccentric dominating set. The 
cardinality of minimum total eccentric dominating set is 
called as the total eccentric domination number and is 
denoted by γte (G). 

3. Connected Eccentric Domination 

A set D ⊆ V(G) is a connected eccentric dominating set if D 
is an eccentric dominating set of G and also the induced 
subgraph <D> is connected. The connected eccentric 
dominating set is a minimal connected eccentric 
dominating set if no proper subset D’ of D is a connected 
eccentric dominating set. The minimal connected eccentric 
dominating set with minimum cardinality is known as a 
minimum connected eccentric dominating set. The 
cardinality of minimum connected eccentric dominating set is 
known as the connected eccentric domination number and 
is denoted by γce (G). 
 
Observations   
  
1. It is easy to observe that only connected graphs have a 
connected eccentric dominating set. 
2. Every connected eccentric dominating set is the eccentric 
dominating set and every eccentric dominating set is the 
dominating set. Therefore we have γ(G) ≤ γed (G) ≤ γce (G). 
3. Every connected eccentric dominating set is the connected 
dominating set and every connected dominating set is the 
dominating set. Therefore, we have γ(G) ≤ γc (G) ≤ γce (G). 
 

Example  

 

 
D is a dominating set but not eccentric dominating set. D2 is 
a eccentric dominating  set but not connected eccentric 
dominating set. D1 is a minimum connected eccentric 
dominating set. Therefore, γce(G) = 5. 
 
Note: 
 
Every non-trivial connected eccentric dominating set is a total 
eccentric dominating set. 
 
Theorem 3.1 

 γce(Kn) = 1 

Proof: 

When G = Kn, radius r = diameter diam = 1. 

Since each vertex u ∈ V(G) is adjacent to remaining vertices of 
V(G) and also each vertex u ∈ V(G) is an eccentric vertex of 
remaining vertices of V(G). 

Hence any vertex u ∈ V(G) dominates remaining vertices of 
V(G) and it is also eccentric vertex of remaining vertices and 
also it is evident that every trivial graph is connected. So D = 
{u} is a minimum connected eccentric dominating set of G. 
Therefore, γce(Kn) = 1 when G = Kn. 
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Theorem 3.2:  

 γce(K1,n) = 2, n ≥ 2 

Proof: 

When G = K1,n  radius r = 1, diameter diam = 2. 

Let S = {u, v} where v is a central vertex. The central vertex v 
dominates all other vertices in V-S and u is an eccentric vertex 
of vertices of V-S. The induced subgraph <S> is connected.  

Therefore, γce(K1,n) = 2, n ≥ 2. 

Theorem 3.3: 

 γce(Km,n) = 1 if m = n = 1 

 γce(Km,n) = 2,  if either m ≥ 1, n ≥ 2 or m ≥ 2, n ≥ 1 

Proof : 

If m = n =1 then K1,1 = K2.  By using theorem 3.1  γce(Km,n) = 
1 if m = n = 1. 

Consider the case m ≥ 1, n ≥ 2 or m ≥ 2, n ≥ 1. If m = 1, n ≥ 2 
and m ≥ 2, n = 1 then radius =1, diameter =2 and for m ≥ 2, 
n ≥ 2 we have radius r = diameter diam = 2. Take G = Km,n 
where V(G) = V1 ∪ V2, |V1| = m and  |V2| = n and such that 
each element of V1 is adjacent to every vertex of V2 and 
viceversa.                                     

Let  D = {u, v}, u ∈ V1 and v ∈ V2, u dominates all the vertices 
of V2 and it is an eccentric vertex of all vertices of V1-{u}. 
Similarly v dominates all the vertices of V1 and it is an 
eccentric vertex of all vertices of V2-{v}. The induced  
subgraph <D> is connected. Therefore, γce(Km,n) = 2,  if either 
m ≥ 1, n ≥ 2 or m ≥ 2, n ≥ 1. 

Theorem 3.4: 

 γce(Cn) = n-2, n ≥ 3 

Proof : 

When G = Cn, radius r  =      n/2 when n is even 
               (n-1)/2 when n is odd 

In Cn, radius r = diameter diam. Consider the cycle Cn : V1, V2, 
V3,…...,Vn,Vn+1 = V1. Since in Cn every vertex is 2 – regular, 
each vertex of V(Cn) dominates exactly 3 vertices. The vertex 
V1 dominates V2, Vn and itself. Now include the vertex V1 in 
the set D. In order to form a connected dominating set D, We 

have to include next consecutive vertex either V2 or Vn in D, 
otherwise we can’t form a connected dominating set. 
Suppose we select V2 ∈ D, then we have to choose next 
consecutive vertex V3 in D. This process is continued until we 
have (n-2) vertices of Cn in D. Therefore, D = { V1, V2, 
V3,…...,Vn-2}. The vertices Vn-1 ∈ V-D is dominated by Vn-2 of D 
and the vertex Vn ∈ V-D is dominated by V1 ∈ D. Clearly D is 
the minimum connected dominating set of Cn. We know that 
Cn is a self – centered graph and radius = r. 

The eccentric vertex of Vi =     Vi+r if i ≤ r 

                                                 Vi-r if i > r when n is even and                                                                                                         
                                               odd 

When n is odd there exist another one eccentric vertex of 

 Vi  =        Vi+r+1 if i ≤ r  

  Vi-r-1 if i > r+1 

  Vn if i = r+1  

Case (i):  When n is even. 

Here r = n/2. 

Vn-1  ∈ V-D.   

The eccentric vertex o f Vn-1  = Vn-1-(n/2), since  n-1 > (n/2) 

       = V(2n-2-n)/2 

         = V(n-2)/2 ≠ Vn 

Therefore the eccentric vertex of Vn-1 = V(n-2)/2 ∈ D 

Vn ∈ V-D. 

The eccentric vertex of Vn = Vn-(n/2),           since n > (n/2) 

                              = Vn/2 ≠ Vn-1 

Therefore the eccentric vertex of Vn = Vn/2 ∈ D 

Case (ii) : When n is odd 

Here r = (n-1)/2 and r+1 = (n+1)/2. 

Vn-1 ∈ V-D.  

The eccentric vertices of Vn-1 = {Vn-1-((n-1)/2), Vn-1-((n-1)/2)-1}   
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                                [since n-1 > ((n-1)/2) and n-1 > r+1] 

   = { V(2n-2-n+1)/2, V(2n-2-n+1-2)/2 }                        

                                              = {V(n-1)/2, V(n-3)/2} ∈ D for n > 3                                                                                                                                                                                                                    

            [ since V(n-1)/2 ≠ Vn ≠ V (n-3)/2]  

      =  {V(n-1)/2} ∈ D for n = 3 

       [since V(n-1)/2 ≠ Vn = V(n-3)/2 put V0 = Vn] 

Vn ∈ V-D. 

The eccentric vertices of Vn = {Vn-((n-1)/2), Vn-((n-1)/2)-1} 
                                      [since n-1 > ((n-1)/2) and n-1 > r+1]   
                                            
                                             = { V(2n-n+1)/2, V(2n-n+1-2)/2 } 
                                             = {V(n+1)/2, V(n-1)/2} ∈ D for n > 3 
                                                 [since V(n+1)/2 ≠ Vn-1 ≠ V (n-1)/2] 
                                             = {V(n-1)/2} ∈ D  for n = 3          =          
                                                 [since V(n-1)/2 ≠ Vn-1 = V(n+1)/2] 
In both cases the eccentric vertex of Vn-1 and Vn is in D and 
the vertex Vn-1 is dominated by the vertex Vn-2 of D and the 
vertex Vn is dominated by the vertex V1 of D and also D is a 
minimum connected dominating set of Cn. Then clearly D is 
the minimum connected eccentric dominating set. Therefore, 
γce(Cn) = |D| = n-2. Hence γce(Cn)  = n-2,   n ≥ 3. 
 
Theorem 3.5: 

 γce(W3) = 1 

 γce(W4) = 2 

 γce(Wn) = 3,    n ≥ 5 

Proof: 

If G = W3 = K4. Therefore by theorem 3.1, γce(K4) = 1 which 
implies that γce(W3) = 1 

When G = W4, consider D = {u, v} where u and v are adjacent 
non central vertices. D is a minimum connected eccentric 
dominating set. Therefore, γce(W4) = 2. 

When G = Wn, n ≥ 5, consider D = {u, v, w} where v is central 
vertex and u, w are any two adjacent non-central vertices. D is 
a minimum connected eccentric dominating set. Therefore, 
γce(Wn) = 3,  n ≥ 5. 

 

Theorem 3.6: 
 
 If G is of diameter two then  γce(G) ≤ 1 + δ(G). 
Proof : 
diam(G) = 2. Let w ∈ V(G) such that deg w = δ(G). Consider   
D = {w} ∪ N(w). This is a connected eccentric dominating set 
of G. The induced subgraph <D> is connected. Therefore, 
γce(G) ≤ 1 + δ(G). 
 
Theorem 3.7: 

If the tree T is of radius 2 with unique central vertex u and 
deg v ≤ 2 for every v ∈ N(u) then 
γce(G) ≤ deg (u) + 2. 
 
Proof : 

Let the tree T is of radius 2 with unique central vertex u. Then 
N[u] is a connected dominating set for G. 

Case (i): 

If any vertex v ∈ N(u) is a pendent vertex then N[u] – {v} is a 
minimum connected dominating set. Suppose if there are k 
pendent vertex in N(u), put all that vertex in the set S. Then 
N[u] – {S} is the minimum connected dominating set for G. 
Any vertex w in V – N[u] is an eccentric vertex for all other 
remaining vertices V – N[u] and also for the vertices of S.  

Therefore, N[u] - {S} + {w} is a minimum connected eccentric 
dominating set. 

γce(G)  = |N[u] –{S} + {w}| 

 = deg(u) + 1 – k + 1 

 = deg(u) + 2 – k 

 < deg(u) + 2 

Case (ii) : 

 If no vertex of N(u) is a pendent vertex then N[u] is the 
minimum connected dominating set. Any vertex w ∈ V – N[u] 
is an eccentric vertex for all other vertices of V – N[u]. 
Therefore, N[u] + {w} is minimum connected eccentric 
dominating set for G. 

γce(G)  = |N[u]  + {w}| 

 = deg(u) + 1 + 1 

 = deg(u) + 2  
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Hence from case (i) and case (ii)  γce(G) ≤ deg(u) + 2 where u 
is a central vertex which is unique and of radius 2. 

Theorem 3.8: 
 γce(Pn) = n-1 
Proof: 
 
Let Pn be a path with n vertices. Then there exist 2 pendent 
vertices say u, v in Pn. Evidently D = V(Pn) – {u, v} is the 
minimum connected dominating set. But the eccentric vertex 
of u ∈ V(Pn) –D is v ∈ V(Pn) – D  and the eccentric vertex  of    
v ∈ V(Pn) –D is u ∈ V(Pn) –D, therefore we have to add either 
u or v in D to form the eccentric dominating set. So that take   
D = V(Pn) – {v}, then clearly D is the minimum connected 
eccentric dominating set and |D| = n-1.  
Hence γce(Pn) = n-1. 
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